1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
8

3. A certain wire, 3 m long, stretches by 1.2 mm when under tension of 200 N. By how much does

Physics
1 answer:
nikitadnepr [17]3 years ago
3 0

Answer:

The extension of the second wire is   e_2 = 0.0024 \  m =  2.4 mm

Explanation:

From the question we are told that

    The length of the wire is L  = 3 \ m

     The elongation of the wire is  e =  1.2mm =  \frac{1.2}{1000} =  0.0012 m

        The tension is F  =  200 \ N

       The length of the second wire is  L_2   =  6 \ m

     

Generally the Young's modulus(Y) of this material is  

        Y  = \frac{stress}{strain }

Where stress =  \frac{F}{A}

    Where A is the area which is evaluated as  

           A = \pi r^2

  and   strain = \frac{extention}{length} =  \frac{e}{L}

   So

        Y  = \frac{\frac{F}{\pi r^2 } }{ \frac{e}{L}  }

Since the wire are of the same material Young's modulus(Y)  is constant

So we have  

              \frac{F * L }{r^2 e}  =  \pi * Y = constant

              F * L   =  constant   * r^2 e

Now the ration between the first and the second wire is

         \frac{F_1}{F_2}  * \frac{L_1}{L_2} =  \frac{r*2_1}{r^2}  *  \frac{e_1}{e_2}

Since tension , radius are constant

   We have

           \frac{L_1}{L_2} =   \frac{e_1}{e_2}

substituting values

          \frac{3}{6} =   \frac{0.0012}{e_2}

          0.5 e_2 =  0.0012

         e_2 = \frac{ 0.0012  }{0.5}

          e_2 = 0.0024 \  m =  2.4 mm

You might be interested in
Exercise 1 Electric Fields In this exercise, you will use a digital multimeter to collect voltage data to graph electric fields.
Lyrx [107]

Answer:

The answers are in the explanation section below

Explanation:

1) The generalization that can be made from the exploration is that as we move away from the positive electrode, the potential energy gets lower. If we move away from the negative electrode, then the potential energy becomes higher.

2) The positive test charge will have the least potential energy when it gets to the negative electrode point.

3) To move one electron 1m in a direction along one of the equal potential lines, there is no energy needed. Zero work will be required for a charge to move on the equipotential line.

4) If lightning strikes a tree 20m away, it would be better to face the tree or have our back facing the tree. This is because the equipotential line will be present at the point where our body stands, this will protect from electric shock.

The pattern to be sketched is attached.

Download pdf
4 0
3 years ago
Express 34.0 cm in inches
bulgar [2K]

Hello,

1 inch = 2 centimeters

2 centimeters = 1 inch

34 / 2 = 17

Answer: 34 centimeters is 17 inches!

7 0
3 years ago
At what rate must a cylindrical spaceship rotate if occupants are to experience simulated gravity of 0.50 gg? Assume the spacesh
Svetradugi [14.3K]

Answer:

The time needed is T  = 16.8 s

Explanation:

From the question we are told that

      The magnitude of the stimulated acceleration due gravity is  a  =  0.5 g

        The diameter of the spaceship is  d =  35m

       

Generally the force acting on the spaceship is  

       F  =  ma

Given that the spaceship is rotating it implies that the force experienced by the occupant is a centripetal force so

      F  = \frac{mv^2}{r}

Thus  

       ma  =  \frac{mv^2}{r}

=>    \frac{v^2}{r}  =  a

      Generally the speed of this spaceship is mathematically represented as

      v =  \frac{2 \pi}{T}

=>    v^2  =   [\frac{2\pi}{T}] ^2

=>     \frac{\frac{4\pi^2 r^2}{T^2} }{r}  = 0.5g

=>       \frac{4 \pi^2 r }{T^2} =  0.5 g

=>         T  = \sqrt{ \frac{4\pi^2 r}{0.5g}}

substituting values

          T  = \sqrt{ \frac{4* (3.142)^2 *(35)}{0.5 * 9.8}}

         T  = 16.8 s

4 0
3 years ago
Read 2 more answers
V=I/R correctly expresses the relationship between voltage, current, and resistance.
docker41 [41]
The correct answer is true
5 0
1 year ago
Read 2 more answers
A driver in a car traveling at a speed of 21.8m/s sees a cat 101 m away on the road. How long will it take for the car to accele
kobusy [5.1K]
The acceleration of the car will be needed in order to calculate the time. It is important to consider that the final speed is equal to zero:

v^2 = v_0^2 + 2ad\ \to\ a = \frac{-v_0^2}{2d} = -\frac{21.8^2\ m^2/s^2}{2\cdot 99\ m} = -2.4\frac{m}{s^2}

We can clear time in the speed equation:

v = v_0 + at\ \to\ t = \frac{-v_0}{a} = \frac{-21.8\ m/s}{-2.4\ m/s^2} = \bf 9.08\ s

If you find some mistake in my English, please tell me know.
3 0
3 years ago
Read 2 more answers
Other questions:
  • If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the
    13·1 answer
  • Find the length of an arc with a radius of 6.0m swept across 2.5 radians.
    9·1 answer
  • How do carbon-12 and carbon-13 differ?
    13·2 answers
  • A machine has a mechanical advantage of 5. if 300 newtons of input force is used to produce 3,000 newton meters of work what is
    6·1 answer
  • A dart gun suspended by strings hangs in equilibrium. The mass of the gun is 355 grams, not including a dart. The gun fires a 57
    13·1 answer
  • How far away are the Stars?
    15·1 answer
  • What’s Chemical energy
    13·2 answers
  • A ladder is balanced against a wall without moving. What<br> must be true about this ladder?
    8·1 answer
  • Please answer 11-13. say if i'm right for 10 if you can.
    11·1 answer
  • 1. Each of four boys were given
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!