I think least electricity is used between probably 7-8a.m. and 4-5p.m.
This is because, around those times, the suns already out. Depending on how sunny it is, it may not be as cold as all the other times of the day. And by then, buildings are typically already warmed all up. Everybody's body heat also may play a factor in buildings. ( if there is a ton of people )
Answer:
4.16 L
Explanation:
Assuming constant temperature,
At the edge of Typhoon Odessa: P₁ = 1 atm = 1013.3 mbar,
V₁ = 4.0 L
At the center of Typhoon Odessa: P₂ = (1013.3 - 40.0) mbar = 973.3 mbar
V₂ = ? L
For a fixed amount of gas at constant temperature (Boyle's law) : P₁V₁ = P₂V₂
V₂ = V₁ × (P₁/P₂)
V₂= (4.0) × (1013.3/973.3)
V₂= 4.16 L
Answer:
0.5 s
Explanation:
From the question given above, the following data were obtained:
Number of circle (n) = 2
Time (t) = 1 s
Period =?
Period of a wave is simply defined as the time taken to make one complete oscillation. Mathematically, it can be expressed as:
T = t / n
Whereb
T => is the period
t => is the space time
n => is the number of circle or oscillation.
With the above formula, we can obtain the period of the wave as follow:
Number of circle (n) = 2
Time (t) = 1 s
Period =?
T = t / n
T = 1 / 2
T = 0.5 s
Thus, the period of the wave is 0.5 s