Answer:
x' = 1.01 m
Explanation:
given,
mass suspended on the spring, m = 0.40 Kg
stretches to distance, x = 10 cm = 0. 1 m
now,
we know
m g = k x
where k is spring constant
0.4 x 9.8 = k x 0.1
k = 39.2 N/m
now, when second mass is attached to the spring work is equal to 20 J
work done by the spring is equal to


x'² = 1.0204
x' = 1.01 m
hence, the spring is stretched to 1.01 m from the second mass.
Answer:
Explanation:
Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.
To objective is to find the:
(i) required heat exchanger area.
(ii) flow rate to be maintained in the evaporator.
Given that:
water temperature = 300 K
At a reasonable depth, the water is cold and its temperature = 280 K
The power output W = 2 MW
Efficiency
= 3%
where;



However, from the evaporator, the heat transfer Q can be determined by using the formula:
Q = UA(L MTD)
where;

Also;




LMTD = 4.97
Thus, the required heat exchanger area A is calculated by using the formula:

where;
U = overall heat coefficient given as 1200 W/m².K

The mass flow rate:

Answer:
A or B you choose
Explanation:
This is called current electricity or an electric current. A lightning bolt is one example of an electric current, although it does not last very long. Electric currents are also involved in powering all the electrical appliances that you use, from washing machines to flashlights and from telephones to MP3 players.
what is an electrical current, amp, ampere Current is the flow of electrons. When a circuit is closed then a current of electrons can flow and when a circuit is open then no current can flow. We can measure the flow of electrons just like you can measure the flow of water through a pipe.
Answer:
t = 0.1111 s
Explanation:
Let's reduce the magnitudes to the SI system
d = 120 mm (1m / 1000 mm)
d= 0.120 m
w = 540 rpm (2pi rad / 1 rev) (1 min / 60s)
w= 56.55 rad / s
When at maximum speed we can use angular kinematic relationships to find the time for a sperm revolution with zero angular acceleration
W = θ / t
t = θ / w
t = 2π / 56.55
t = 0.1111 s