1. Ca → Element
2. Proton → positive
3. H2O → compound
4. Fission → nuclear decay
5. Fusion → Nuclear synthesis
6. η → Neutron
7. e → electron
8. Atomic number → no of protons in nucleus.
Explanation
1. Ca (Calcium):
Calcium is an element with the atomic number of 20. It is an alkaline earth metal. The 99% of calcium is found in our bodies, in bones, teeth.
2. Proton:
Proton is a subatomic particle and it holds the positive charge. Proton is present in the nucleus of the atom.
3. H2O (water):
Water is a chemical compound and it's chemical formula is H2O. It's called compound as it contains 2 hydrogen and 1 oxygen atoms bonded together through the covalent bond.
4. Fission:
Fission is a process in which large massive unstable nucleus splits into the smaller, less heavier and stable nuclei. The energy is re;eased in the form of radiations during this process. It's called as the radioactive decay.
5. Fusion:
Fusion is opposite of the fission reaction. As in this case the two nuclei combines to form a single large nucleus. That's why it is a nuclear synthesis process.
6. η neutron:
Neutron is a subatomic particle and it is a neutral particle which is located inside the nucleus. n is a symbol used for the neutron.
7. e Electron:
The symbol for electron is e. It's a subatomic particle with negative charge. It is found in the orbits around the nucleus.
8. Atomic Number:
Atomic number is defined as the number of protons in the nucleus of an atom. IT is represented by Z.
Answer:
After 12 seconds, the area enclosed by the ripple will be increasing rapidly at the rate of 1206.528 ft²/sec
Explanation:
Area of a circle = πr²
where;
r is the circle radius
Differentiate the area with respect to time.

dr/dt = 4 ft/sec
after 12 seconds, the radius becomes = 
To obtain how rapidly is the area enclosed by the ripple increasing after 12 seconds, we calculate dA/dt


dA/dt = 1206.528 ft²/sec
Therefore, after 12 seconds, the area enclosed by the ripple will be increasing rapidly at the rate of 1206.528 ft²/sec
The final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Answer:
Explanation:
So in this problem, the initial speed of the train is at 25.8 m/s before it comes to incline with constant slope. So the acceleration or the rate of change in velocity while moving on the incline is given as 1.66 m/s². So the final velocity need to be found after a time period of 8.3 s. According to the first equation of motion, v = u +at.
So we know the values for parameters u,a and t. Since, the train slows down on the slope, so the acceleration value will have negative sign with the magnitude of acceleration. Then
v = 25.8 + (-1.66×8.3)
v =12.022 m/s.
So the final velocity of the train after 8.3 s on the incline will be 12.022 m/s.
Every piece of matter begins “Out of this world”
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N