Answer:
surface temperature of the chip located 120 mm Ts=42.5°C
surface temperature of the chip in Mexico Ts=46.9°C
Explanation:
from the energy balance equation we have to:
q=E=30W
from Newton´s law:
Ts=Tα+(q/(h*A)), where A=l^2
N=h/k=0.04*(Vl/V)^0.85*Pr^1/3
data given:
l=0.12 m
v=10 m/s
k=0.0269 W/(m*K)
Pr=0.703
Replacing:
h=0.04*(0.0269/0.12)*(10*0.12)/((16*69x10^-6))^0.85*(0.703^1/3) = 107 W/m^2*K
The surface temperature at sea level is equal to:
Ts=25+(30x10^-3/107*0.004^2)=42.5°C
h=0.04*(0.0269/0.12)*((10*0.12)/(21*81x10^-6))^0.85*(0.705^1/3)=85.32 W/(m*K)
the surface temperature at Mexico City is equal to:
Ts=25+(30x10^-3/85.32*0.004^2)=46.9°C
Answer:
a) 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b) 3.466 × 10¹¹ N/C
Explanation:
a)
p(r) = -A exp ( - 2r/a₀)
Q = ₀∫^∞ ₀∫^π ₀∫^2xπ p(r)dV = -A ₀∫^∞ ₀∫^π ₀∫^2π exp ( - 2r/a₀)r² sinθdrdθd∅
Q = -4πA ₀∫^∞ exp ( - 2r/a₀)r²dr = -e
now using integration by parts;
A = e / πa₀³
p(r) = - (e / πa₀³) exp (-2r/a₀)
Now Net charge inside a sphere of radius a₀ i.e Qnet is;
= e - (e / πa₀³) ₀∫^a₀ ₀∫^π ₀∫^2π r² exp (-2r/a₀)dr
= e - e + 5e exp (-2) = 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b)
Using Gauss's law,
E × 4πa₀ ² = Qnet / ∈₀
E = 4πa₀ ² × Qnet × 1/a₀²
E = 3.466 × 10¹¹ N/C
Answer:
v_{ average} = 5.57
Explanation:
The most probable value of a measure is
v_average =
∑ x_i
where N is the number of measurements
in tes case N = 3
v_{average} = ⅓ (5.63 +5.54 + 5.53)
V_{average} = 5,567
The number of significant figures must be equal to the number of figures that have the least in the readings.
v_{ average} = 5.57
Explanation:
The supermassive black holes that the Event Horizon Telescope is observing are far larger; Sagittarius A*, at the center of the Milky Way, is about 4.3 million times the mass of our sun and has a diameter of about 7.9 million miles (12.7 million km), while M87 at the heart of the Virgo A galaxy is about 6 billion solar ..