Answer:
=118.8 K= 154.2°C
Explanation:
COP_max of carnot heat pump= 
where T_H and T_C are temperatures of hot and cold reservoirs
Also COP=
in the question 
⇒
heat is added directly to be as efficient as via heat pump

and T_H= 24° C= 297 K

on calculating the above equation we get
=118.8 K
the outdoor temperature for efficient addition of heat to interior of home
=118.8 K= 154.2°C
Question:
The operations manager for a well-drilling company must recommend whether to build a new facility, expand his existing one, or do nothing. He estimates that long-run profits (in $000) will vary with the amount of precipitation (rainfall) as follows:
Alternative Precipitation
Low Normal High
Do nothing -100 100 300
Expand 350 500 200
Build new 750 300 0
If he feels the chances of low, normal, and high precipitation are 30 percent, 20 percent, and 50 percent respectively, What is EVPI (Expected value of Perfect Information)?
A. $140,000
B. $170,000
C. $285,000
D. $305,000
E. $475,000
Answer:
D. $170,000
Explanation:
The expected long run profits are for
Low Normal High
Do nothing -100*0.3 100*0.2 300*0.5 = 140
Expand 350*0.3 500*0.2 200*0.5 = 305
Build new 750*0.3 300*0.2 0*0.5 = 285
Therefore the expected long run profits are
$140,000
$305,000
$285,000
Based on his selected option being either to build new or to expand, the most profitable option is to expand
=$305,000
EVPI = EPPI-EMV =$170,000
Answer:
sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
Explanation:
We have given first vector which has length of 7 units and makes an angle of 30° with positive x-axis
So x component of the vector 
y component of the vector 
So vector will be 6.06i+3.5j
Now other vector of length of 7 units and makes an angle of 120° with positive x-axis
So x component of vector 
y component of the vector 
Now sum of these two vectors is 6.06i+3.5j-3.5i+6.06j = 2.56i+9.56j
Answer:
Constructive Interference
Explanation:
Constructive Interference occurs when two waves superimpose and make bigger amplitudes.
In constructive interference, the crests of one wave fall on the crests of second wave and the amplitudes add up. The amplitude of the resultant wave is equal to sum of the amplitude of the individual waves. Similarly, the trough of first wave falls on the trough of other wave and they superimpose to create the trough of the resultant wave.
For Example, In the attachment, two waves A and B superimpose and demonstrate Constructive interference to create the wave C.