Basically, an electron dot diagram is just a diagram showing the number of valence electrons a certain atom has (valence electrons are electrons in the outer-most electron level of an atom). The 5 steps they give you just tell you the order of where to put each dot. The picture I attached gives a better representation.
The number around the symbol shows the order of where you would put the dot. The 1 and the 2 on the top show that the first two dots go there, and the 3, 4, and 5 go around the rest of the sides. When it gets to 6, 7, and 8, the numbers go back around to fill in each side twice.
<h2>
Answer:</h2>
<h3>From the equation it is evident that 2 moles of Sodium metal produces 1 mole of hydrogen gas.</h3><h3>At STP 1mole of any gas occupies a volume of 22.4 litres.</h3><h3>Therefore, 7.80 gives---(7.80x1)/22.4 moles = 0.3482 moles</h3><h3>Since the mole ratio of Sodium to hydrogen is 2:1, then the number of moles of sodium that reacted is given by the following expression.</h3><h3>(0.3482 * 2) / 1 moles which gives 0.6964 moles.</h3><h3>The atomic mass of sodium is 23 thus the mass of sodium that reacted is given by:</h3><h3>mass=no. of Monogram</h3><h3>0.6964 * 23 = 16.02 grams.</h3><h2>
Explanation:</h2><h3>please mark me brainlist</h3>
Answer:
- <u><em>It will be less than 26 °C as water has a relatively higher specific heat than sand.</em></u>
Explanation:
The <em>specific heat </em>of a substance is the amount of heat energy absorbed by one unit of mass of the substance when its temperature increases one unit.
From that, you can derive the equation for the specific heat of a substance:
- specific heat = heat / (mass × ΔT)
Thus, assuming that all the heat provided by the lamp to both samples is the same and, as given, the amount (mass) of both samples is also the same, you have that the specific heat of the samples will be:
- specific heat = constant / ΔT
So, specific heat and ΔT are inversely related.
It is known that water has a higher specific heat than sand (that is why the sand on the shore of a beach is, during the day, hotter than the water and your feet get burned when you walk on a sandy beach on a sunny day).
Then, since the specific heat of water is greater than the specific heat of sand, the increase of temperature of water will be lower and, consequently, water will reach a lower final temperature than sand, when equal amounts of water and sand are heated as described in the experiment. This is the second choice: the final temperature of water is less than 26°C as water has a relatively higher specific heat than water.
Answer:
Normal, clean rain has a pH value of between 5.0 and 5.5, which is slightly acidic. However, when rain combines with sulfur dioxide or nitrogen oxides—produced from power plants and automobiles—the rain becomes much more acidic. Typical acid rain has a pH value of 4.0.
Explanation:
keep smiling (θ‿θ)