Answer:
0.5667 M ≅ 0.57 M.
Explanation:
It is known that the no. of millimoles of a solution before dilution is equal to the no. of millimoles of the solution after the dilution.
It can be expressed as:
(MV) before dilution = (MV) after dilution.
M before dilution = 1.5 M, V before dilution = 340 mL.
M after dilution = ??? M, V after dilution = 340 mL + 560 mL = 900 mL.
∴ M after dilution = (MV) before dilution/(V) after dilution = (1.5 M)(340 mL)/(900 mL) = 0.5667 M ≅ 0.57 M.
Answer:
equivalent exchange forces cancel out but the substances are affected around the area
Explanation:
Answer: 66.2 g
Explanation:
1) The ratio of Al in the molecule is 1 mol to 1 mol .
2) The mass of 1 mol of molecules of Al (CH2H3O2)3 is the molar mass of the compound.
3) You calculate the molar mass of the compound using the atomic masses of each atom, in this way:
Al: 27 g/mol
C: 2 * 3 * 12 g/mol = 72 g/mol
H: 3 * 3 * 1 g/mol = 9 g/mol
O: 2 * 3 * 16 g/mol = 96 g/mol
Molar mass = 27 g/mol + 72 g/mol + 9 g/mol + 96 g/mol = 204 g/mol
4) Set a proportion:
27 g/mol x
-------------------- = ----------
204 g/mol 500 g
5) Solve for x:
x = 500 g * 27 g/mol / 204 g/mol = 66.2 g
Answer: Option (E) is the correct answer.
Explanation:
A spontaneous reaction is defined as the process which tends to occur on its own. And, a non-spontaneous reaction is defined as a process for the completion of which we have to provide certain conditions.
For example, ice melting at
is spontaneous primarily due to the increase in molecular disorder (dispersal of matter). Also, melting of ice is taking place on its own without any external force.
It is not necessary that all exothermic reactions will be exothermic in nature.
Thus, we can conclude that the statement all exothermic reactions are spontaneous, is false.
It is a homogeneous mixture because you cannot see the individual components that make up the iced tea (such as the water, the molecules found in the tea leaves, etc.). Iced tea with ice in it is considered a heterogeneous mixture because you can distinguish the tea from the ice.