I have no idea honestly I don’t remember I had it and I forgot it
Answer:
1120 L.
Explanation:
Hello!
In this case, as no conditions of pressure of temperature are given for this problem, we can assume that the scuba diver dives at STP (1 atm and 273.15 K), which means that 1 mole of air would occupy a volume of 22.4 L.
In such a way, since she needs 50.0 moles of air, the following ratio is useful to compute the size (volume) of the tank she needs:

Thereby, we plug in to obtain:

Best regards!
In a food chain we arrange the energy in the form of a pyramid.
The producers are on the base of pyramid and then consumers are towards peak.
in the given food chain grass is being eaten by grasshopper which are food of birds.
Grasshoppers are also eaten up by Hawks. so both brids and hawks are feeding upon grasshoppers thus the amount of energy transferred from the grass to the grasshopper is the same as the amount of energy transferred from the grasshopper to the bird.
Mass of KCl= 1.08 g
<h3>Further explanation</h3>
Given
1 g of K₂CO₃
Required
Mass of KCl
Solution
Reaction
K₂CO₃ +2HCl ⇒ 2KCl +H₂O + CO₂
mol of K₂CO₃(MW=138 g/mol) :
= 1 g : 138 g/mol
= 0.00725
From the equation, mol ratio K₂CO₃ : KCl = 1 : 2, so mol KCl :
= 2/1 x mol K₂CO₃
= 2/1 x 0.00725
= 0.0145
Mass of KCl(MW=74.5 g/mol) :
= mol x MW
= 0.0145 x 74.5
= 1.08 g
The mass of NaCl formed is 8.307 grams
<u><em> calculation</em></u>
step 1: write the equation for reaction
Na₂CO₃ + 2HCl → 2 NaCl +CO₂ +H₂O
Step 2: find the moles of Na₂CO₃
moles = mass/molar mass
The molar mass of Na₂CO₃ is = (23 x2) + 12 + ( 16 x3) = 106 g/mol
moles = 7.5 g/106 g/mol =0.071 moles
Step 3: use the mole ratio to determine the mole of NaCl
Na₂CO₃:NaCl is 1:2 therefore the moles of NaCl =0.07 x2 =0.142 moles
Step 4: calculate mass of NaCl
mass= moles x molar mass
the molar mass of NaCl= 23 +35.5 =58.5 g/mol
mass = 0.142 moles x 58.5 g/mol =8.307 grams