Answer:
0.026
Explanation:
The force of friction acts in the direction perpendicular to the norm force of the surface on which the object rests, induced by gravity. The magnitude of the friction force is
(Friction) = (mass) x (gravitational acceleration g) x (coefficient of friction)
from which the coefficient of friction can be determined:
(coefficient of friction) = (Friction) / ((mass)x(g)) = 3 N / (12 kg * 9.8 m/s^2) = 0.026
Answer:
My mom always told me he was just there
Explanation:
No.
The acceleration of gravity on or near Earth's surface is 9.8 m/s² ,
not 20 m/s² .
If it were 20 m/s², then you would weigh almost exactly double
what you really weigh now.
Answer:
N = 648.55[N]
Explanation:
To solve this problem we must use Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
∑F = Forces applied [N]
m = mass = 73.2 [kg]
a = acceleration = 0.950 [m/s²]
Let's assume the direction of the upward forces as positive, just as if the movement of the box is upward the acceleration will be positive.
By performing a summation of forces on the vertical axis we obtain all the required forces and other magnitudes to be determined.

where:
g = gravity acceleration = 9.81 [m/s²]
N = normal force (or weight) measured by the scale = 83.4 [N]
Now replacing:
![-(73.2*9.81)+N=-73.2*0.950\\-718.092+N=-69.54\\N = -69.54+718.092\\N = 648.55[N]](https://tex.z-dn.net/?f=-%2873.2%2A9.81%29%2BN%3D-73.2%2A0.950%5C%5C-718.092%2BN%3D-69.54%5C%5CN%20%3D%20-69.54%2B718.092%5C%5CN%20%3D%20648.55%5BN%5D)
The acceleration has a negative sign, this means that the elevator is descending at that very moment.
<span>a 205 kg mass object will weight 1143.43 lbs on Jupiter.
Looking up the surface gravity of Jupiter, you can find that it's 2.53 times that of earth. So the 205 kg object will weigh
205 * 2.53 = 518.65 kg on Jupiter.
Now we need to convert from kg to pounds. This is done by multiplying by 2.20462
518.65 kg * 2.20462 lb/kg = 1143.43 lb</span>