If you increase the mass of an object and want to move an object a specific distance, then you need to do extra work than the earlier
<h3>What is work done?</h3>
The total amount of energy transferred when a force is applied to move an object through some distance
Work Done = Force * Displacement
For example, let us suppose a force of 10 N is used to displace an object by a displacement of 5 m then the work done on the object can be calculated by the above-mentioned formula
work done = 10 N ×5 m
=50 N m
Thus, when an object's mass is increased and it is desired to move it a certain distance, more work must be done than previously.
Learn more about work done from here
brainly.com/question/13662169
#SPJ1
The <em>gaseous state</em> of matter does that. A gas expands to take the shape and volume of whatever you put it into.
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm
Answer: A and B
Explanation:
A
The wavelength of both transverse and longitudinal waves is measured parallel to the direction of the travel of the wave.
Because wavelength is the distance between the two successful crest or trough.
B)
Amplitude of longitudinal waves is measured at right angles to the direction of the travel of the wave and represents the maximum distance the molecule has moved from its normal position.
Because amplitude is the measure of maximum displacement from the original position