Ith air resistance acting on an object that has been dropped, the object will eventually reach a terminal velocity, which is around 53 m/s (195 km/h or 122 mph) for a human skydiver. ... (On the Moon, the gravitational acceleration is much less than on Earth, approximately 1.6 m/s2.)
Answer:
0.00417 kW/K or 4.17 W/K
Second law is satisfied.
Explanation:
Parameters given:
Rate of heat transfer, Q = 2kW
Temperature of hot reservoir, Th = 800K
Temperature of cold reservoir, Tc = 300K
The rate of entropy change is given as:
ΔS = Q * [(1/Tc) - (1/Th)]
ΔS = 2 * (1/300 - 1/800)
ΔS = 2 * 0.002085
ΔS = 0.00417 kW/K or 4.17 W/K
Since ΔS is greater than 0, te the second law of thermodynamics is satisfied.
Surveys are considered the most reliable way to gather data