<span>The three main types of stress in a rock are shearing, tension, and compression. hope. that helped</span>
Answer:
A wave is a disturbance of the space (or of a medium), that carries energy without transmitting matter.
A wave is produced when there is a periodic vibration in the particles of a medium (mechanical wave), or when there is a periodic oscillation of the electric and magnetic fields (electromagnetic waves). Electromagnetic waves are the only ones that can travel through a vacuum.
Mechanical waves are further classified into two types, depending on how the particles in the medium vibrate:
- If they vibrate up and down (perpendicular to the direction of motion of the wave), they are called transverse waves
- If they vibrate back and forth (parallel to the direction of motion of the wave), they are called longitudinal waves
In general, waves are generated from a precise point in the space, which is called source of the wave. The source of the wave does work, since it is responsible for starting the motion of the particle, and make them starting vibrating, so it transmits energy to the particles.
Mercury's natural state is where the atoms are close to each other but are still free to pass by each other. In which state(s) could mercury naturally exist?
Liquid is the answer
The calculated coefficient of kinetic friction is 0.33125.'
The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
given mass of the block=10 kg
spring constant k= 2250 Nm
now according to principal of conservation of energy we observe,
the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.
mgh= μ (mgl) +1/2 kx²
10 x 10 x 3= μ(600) +(1125) (0.09)
μ(600) =300 - 101.25
μ = 198.75÷600
μ =0.33125
The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)
Learn more about kinetic friction here-
brainly.com/question/13754413
#SPJ4
They use Newton to measure force