Answer:
480J
Explanation:
Using the formula:
Delta U = Q - W
Q:Heat (J)
Delta U: Changes in internal Energy (J)
W:Work (J)
We can plug in the give numbers, Q and W.
Delta U = 658J - 178J = 480J
Answer:
(a) 5.04 eV (B) 248.14 nm (c) 
Explanation:
We have given Wavelength of the light \lambda = 240 nm
According to plank's rule ,energy of light


Maximum KE of emitted electron i= 0.17 eV
Part( A) Using Einstien's equation
, here
is work function.
= 5.21 eV-0.17 eV = 5.04 eV
Part( B) We have to find cutoff wavelength



Part (C) In this part we have to find the cutoff frequency

Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.
It would take about 2 thirds of a second or .66666666 repeating of a second. please give brainliest?
Answer:

Explanation:
Given that,
The magnitude of magnetic field, B = 2.21
We need to find the magnitude of the electric field. Let it is E. So,

Put all the values,

So, the magnitude of the electric field is equal to
.