First, we have to get:
1- The heat required to increase T of ice from -50 to 0 °C:
according to q formula:
q1 = m*C*ΔT
when m is the mass of ice = mol * molar mass
= 1 mol * 18 mol/g
= 18 g
and C is the specific heat capacity of ice = 2.09 J/g-K
and ΔT change in temperature = 0- (-50) = 50°C
by substitution:
∴q1 = 18 g * 2.09 J/g-K *50°C
= 1881 J = 1.881 KJ
2- the heat required to melt this mass of ice is :
q2 = n*ΔHfus
when n is the number of moles of ice = 1 mol
and ΔHfus = 6.01 KJ/mol
by substitution:
q2 = 1 mol * 6.01 KJ/mol
= 6.01 KJ
3- the heat required to increase the water temperature from 0°C to 60 °C is:
q3 = m*C*ΔT
when m is the mass of water = 18 g
C is the specific heat capacity of water = 4.18 J/g-K
ΔT is the change of Temperature of water = 60°C - 0°C = 60°C
by substitution:
∴q3 = 18 g * 4.18 J/g-K * 60°C
= 4514 J = 4.514 KJ
∴the total change of enthalpy = q1+q2+q3
= 1.881 KJ +6.01 KJ + 4.514 KJ
= 12.405 KJ
Answer:
one move parallel to the direction of the movement and the other move perpendicular to towards the direction of the move of wave..transverse and longitudinal wave
Answer:
Galileo Galilei
What launched the era of modern science in the 17th century? Modern science began in the 17th century, when the Italian physicist Galileo Galilei revived the Copernican view.
hope this helps
Explanation:
Answer: 2.71 moles of solute for every 1 kg of solvent.
Explanation: As you know, the molality of a solution tells you the number of moles of solute present for every 1 kg of the solvent.This means that the first thing that you need to do here is to figure out how many grams of water are present in your sample. To do that, use the density of water.500.mL⋅1.00 g1mL=500. g Next, use the molar mass of the solute to determine how many moles are present in the sample.115g⋅1 mole NanO385.0g=1.353 moles NaNO3So, you know that this solution will contain 1.353moles of sodium nitrate, the solute, for 500. g of water, the solvent.In order to find the molality of the solution, you must figure out how many moles of solute would be present for 1 kg=103g of water.103g water⋅1.353 moles NaNO3500.g water=2.706 moles NaNO3You can thus say that the molality of the solution is equal to molality=2.706 mol kg−1≈2.71 mol kg−1 The answer is rounded to three sig figs.
N = (PV)/RT
(T = 88.78 + 273 = 361.78K)
(R = 22.4/273 = 0.082)
= (5.49 x 22.03)/(0.082 x 361.78) = ?
Put it into the calculator. It's hard to do that on a mobile phone.