Answer : The value of reaction quotient, Q is 0.0625.
Solution : Given,
Concentration of
= 2.00 M
Concentration of
= 2.00 M
Concentration of
= 1.00 M
Reaction quotient : It is defined as a concentration of a chemical species involved in the chemical reaction.
The balanced equilibrium reaction is,

The expression of reaction quotient for this reaction is,
![Q=\frac{[Product]^p}{[Reactant]^r}\\Q=\frac{[NH_3]^2}{[N_2]^1[H_2]^3}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BProduct%5D%5Ep%7D%7B%5BReactant%5D%5Er%7D%5C%5CQ%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5E1%5BH_2%5D%5E3%7D)
Now put all the given values in this expression, we get

Therefore, the value of reaction quotient, Q is 0.0625.
1.question, 2.observe, 3.hypothesize, 4.experiment 5.conclusion, 6. record.
Answer: the answer is option 3. C
Explanation:
Answer:
See explanation
Explanation:
The periodic table shows the atomic number and mass number of each element.
We know that the atomic number shows;
- The number of protons in the nucleus of the atom
- The number of electrons in the neutral atom of the element.
So we obtain the number of protons and electrons by looking at the atomic number shown in the periodic table.
We also know that;
Mass number = Number of protons + number of neutrons
Since number of protons = atomic number of the atom
Number of neutrons = Mass number - atomic number
Hence we obtain the number of protons by subtracting the atomic number from the mass number given in the periodic table.
440 hertz = 440/seconds
1/440 seconds = period of the sound wave.
so Answer is 2.2727272* 10^-3 second or 1/440 seconds