Answer:
D) both a and c are correct
Explanation:
The reaction rate is a measure of the speed of a chemical reaction. The factors that affects the rate of a chemical reaction are itemised below:
- Nature of the reactants
- Concentration of the reactants or pressure(if gaseous)
- Temperature
- Presence of catalyst
- Sunlight
Our concern here is temperature. Temperature affects a reaction considerably. Average kinetic energy is directly proportional to the temperature of the reacting particles. When the temperature of a reacting system is increase, the frequency of ordinary and effective collisions per unit time increases. A decrease in temperature implies that the number of collisions also decreases.
First, we need the no.of moles of O2 = mass/molar mass of O2
= 55 g / 32 g/mol
= 1.72 mol
from the balanced equation of the reaction:
2H2 (g) + O2(g) → 2H2O(g)
we can see that the molar ratio between O2: H2O = 1: 2
So we can get the no.of moles of H2O = 2 * moles of O2
= 2 * 1.72 mol
= 3.44 mol
So by substitution by this value in ideal gas formula:
PV = nRT
when P = 12.4 atm & n H2O = 3.44 mol & R= 0.0821 & T = 85 + 273=358K
12.4 atm *V = 3.44 * 0.0821 * 358 = 8.15 L
∴ V ≈ 8.2 L
Answer: hydrogen is the limiting reactant.
Explanation:
We have the equation
.
This means that for every mole of nitrogen consumed, 3 moles of hydrogen are consumed.
- Considering the nitrogen, the reaction can occur 0.50 times.
- Considering the hydrogen, the reaction can occur 1.8/3 = 0.6 times.
Therefore, <u>hydrogen</u> is the limiting reactant.
Answer:
The conversion achieved for the first CSTR impeller is 0.382
Discrepancy = 0.188
Explanation:
The impeller divides the CSTR into 2 equal reactors of volume 500gal
Using V = FaoX/ (-ra)
500gal = Fao×Xa/[(KCao^2( 1 -X1)^2]
500gal = CaoVoX1/ KCao^2(1-X1)
500gal= 500gal × X1'/(1 - X1)^2
(1 -X1)^2 = X1
X1^2 - 3X1 + 1 = 0
X1= 0.382
Conversion achieved in the first CSTR is 0.382
Actual measured CSTR = 57% =57/100=0.57
Discrepancy in the conversions= 0.57 -0.383 =0.188