Answer: d= 0.57* l
Explanation:
We need to check that before ladder slips the length of ladder the painter can climb.
So we need to satisfy the equilibrium conditions.
So for ∑Fx=0, ∑Fy=0 and ∑M=0
We have,
At the base of ladder, two components N₁ acting vertical and f₁ acting horizontal
At the top of ladder, N₂ acting horizontal
And Between somewhere we have the weight of painter acting downward equal to= mg
So, we have N₁=mg
and also mg*d*cosФ= N₂*l*sin∅
So,
d=
* tan∅
Also, we have f₁=N₂
As f₁= чN₁
So f₁= 0.357 * 69.1 * 9.8
f₁= 241.75
Putting in d equation, we have
d=
* tan 58
d= 0.57* l
So painter can be along the 57% of length before the ladder begins to slip
Answer:
The translational kinetic energy is 225 J
The rotational kinetic energy is 225 J
Explanation:
Given;
mass of the wheel, m = 2-kg
linear speed of the wheel, v = 15 m/s
Transnational kinetic energy is calculated as;
E = ¹/₂MV²
where;
M is mass of the moving object
V is the velocity of the object
E = ¹/₂ x 2 x (15)²
E = 225 J
Rotational kinetic energy is calculated as;
E = ¹/₂Iω²
where;
I is moment of inertia
ω is angular velocity

E = ¹/₂ x 2 x (15)²
E = 225 J
Thus, the translational kinetic energy is equal to rotational kinetic energy
Answer:
Vaccination is the procedure by which a person can be immunized against a disease.
The De broglie wavelength of a thermal neutron at room temperature 300K = 1.5 × A°
<h3>How is the De broglie wavelength of a thermal neutron at room temperature calculated?</h3>
Temperature, T = 300K
Momentum, p = mv
Therefore v = p/m
Energy, E= 1/2 m( p/m) ²
Boltzman Energy= 3/2 KT
3/2KT = 1/2 m(p/m)²
Therefore p =
According to De broglie hypothesis, P = h ÷ λ
Therefore, λ = h ÷ 
= 6.6×
÷ 
= 0.15 × 
Therefore the De broglie wavelength of a thermal neutron at room temperature 300K = 1.5 × A°
To learn more about De broglie wavelength, refer: <u>https://brainly.in/question/6131028</u>
#SPJ4