When cooled by liquid nitrogen, the balloon shrinks (not as much as the air-filled balloon) and it sinks down on the table. When heating up, the balloon slowly rises and flies up in the air again. Explanation 1: The volume of the balloon decreases by the low temperature, because the gas inside is cooled down.
Answer:Re3(PO4)2 I think I'm wrong
Explanation:
Answer:
The method used for measuring the small distance is by using the scales and the distance measured over long distance is by inch tape or measuring tape.
Explanation:
This problem could be solved easily using the Henderson-Hasselbach equation used for preparing buffer solutions. The equation is written below:
pH = pKa + log[(salt/acid]
Where salt represents the molarity of salt (sodium lactate), while acid is the molarity of acid (lactic acid).
Moles of salt = 1 mol/L * 25 mL * 1 L/1000 mL = 0.025 moles salt
Moles of acid = 1 mol/L* 60 mL * 1 L/1000 mL = 0.06 moles acid
Total Volume = (25 mL + 60 mL)*(1 L/1000 mL) = 0.085 L
Molarity of salt = 0.025 mol/0.085 L = 0.29412 M
Molarity of acid = 0.06 mol/0.085 L = 0.70588 M
Thus,
pH = 3.86 + log(0.29412/0.70588)
pH = 3.48
Answer:
(a) 0.047 g (b) 0.0016 oz (c) 0.0001 lb
Explanation:
The given mass of the sodium in the slice = 47 mg
(a) Mass has to be calculated in grams
The conversion of mg to g is shown below as:
1 mg = 10⁻³ g
So,
<u>Mass of sodium = 47 × 10⁻³ g = 0.047 g</u>
(b) Mass has to be calculated in ounces
The conversion of ounces to g is shown below as:
453.6 g = 16 oz
Or,
1 g = 16 / 453.6 oz
So,
<u>Mass of sodium = (0.047 × 16) / 453.6 oz = 0.0016 oz</u>
(c) Mass has to be calculated in pounds
The conversion of pounds to g is shown below as:
1 lb = 453.6 g
Or,
1 g = 1/ 453.6 lb
So,
<u>Mass of sodium = (0.047 × 1) / 453.6 oz = 0.0001 lb</u>