Answer:
particles larger than 5 microns are normally expelled. -particles smaller than 5 microns may enter into alveolar sacs. ... -chemical can penetrate skin and go into bloodstream.
Explanation:
<span>The enthalpy of an intermediate step when used to produce an overall chemical equation should be manipulated in this way:
</span><span>Multiply the enthalpy by –1 if the chemical equation is reversed.
If the forward reaction requires energy, the reverse will produce energy.</span>
Understanding chemistry and its principles enables us to predict and understand various properties of substances. For example, because we know that ionic bonds are very strong and difficult to break, we know that any substance that has these bonds will have a high melting point, because melting is a process that requires the intermolecular bonds present in the solid state to be broken. This can be applied to table salt, sodium chloride, which has an ionic structure and a melting point of almost 800 degrees Celsius. Similarly, many other properties and characteristics may be predicted using concepts of chemistry.
It always points towards the products.
Answer:
93.28%
Explanation:
To solve the percent yield we need to find theoretical yield:
<em>Percent yield = Actual Yield (452.78g) / Theoretical yield * 100</em>
<em />
Theoretical yield is obtained converting the mass of acetylene to moles and using the balanced equation determine the moles of CO₂ produced assuming a 100% of reaction:
<em>Moles acetylene (Molar mass: 26.04g/mol)</em>
143.6g C₂H₂ * (1mol / 26.04g) = 5.515 moles C₂H₂
<em>Moles CO₂:</em>
5.515 moles C₂H₂ * (4 moles CO₂ / 2mol C₂H₂) = 11.029moles CO₂
<em>Mass CO₂ (Molar mass: 44.01g/mol):</em>
11.029moles CO₂ * (44.01g / mol) = 485.39g CO₂ is theoretical yield
Percent yield is:
Percent yield = 452.78g / 485.39g * 100
= 93.28%