Answer:
The correct answer is 1.194 J/g.ºC
Explanation:
The heat released by the material is absorbed by the water. We put a minus sign (-) for a released heat and a plus sign (+) for an absorbed heat.
We know the mass of the material (mass mat= 25.0 g) and the mass of water (mass H20= 100.0 g) and the specific heat capacity of water is known (Shw=4.18 J/g.ºC), so we can equal the heat released by the material and the heat absorbed by water y calculate the specific heat capacity of the material (Shm) as follows:
heat released by material = heat absorbed by water
-(mass material x Shm x ΔT)= mass water x Shw x ΔT
-(25.0 g x Shm x (24ºC - 80ºC)= 100.0 g x 4.18 J/g.ºC x (24ºC-20ºC)
25.0 g x Shm x (56ºC) = 100.0 g x 4.18 J/g.ºC x 4ºC
⇒Shm= (100.0 g x 4.18 J/g.ºC x 4ºC)/(25.0 g x 56ºC)
Shm= 1.194 J/g.ºC
Answer:
Solvent is 1.00 liter of water.
Molarity of the resulting solution will be 1.33 M.
<u>Explanation:</u>
First we have to find the number of moles for each of the solution using the formula, moles = molarity × volume
For cup 1 = 1 M ×0.05 L = 0.05 moles
For cup 2 = 2.5 M × 0.05 L= 0.125 moles
For cup 3 = 0.5 M × 0.05 L = 0.025 moles
Total moles = 0.05 + 0.125 + 0.025 = 0.2 moles
We have to find the total volume as, 0.05 + 0.05 + 0.05 = 0.15 L
Now we have to find the molarity as, moles / volume = 0.2 moles/ 0.15 L = 1.33 M
<span>d. group 3a
is your correct answer</span>
Answer:
3 mol AlCl₃.
Explanation:
Hello!
In this case, according to the specified reactants and products, it is possible to set up the following balanced chemical reaction:

Whereas we evidence the 1:3 mole ratio between aluminum nitrate and sodium chloride; thus, since different moles were reacting, we need to identify the limiting reactant by computing the moles of AlCl₃ produced by each reactant as follows:

Thus, we infer that NaCl is the limiting reactant as it produces the fewest moles of AlCl₃; consequently the produced amount of this product is 3 mol.
Best regards!