The arrangement in space and the interatomic distances and angles of the atoms in crystals, usually determined by x-ray diffraction measurements
Answer: Option (C) is the correct answer.
Explanation:
Chemical formula of a secondary amide is R'-CONH-R, where R and R' can be same of different alkyl or aryl groups. Here, the hydrogen atom of amide is attached to more electronegative oxygen atom of the C=O group.
Therefore, the hydrogen atom will be more strongly held by the electronegative oxygen atom. As a result, there will be strongly hydrogen bonded in the liquid phase of secondary amide.
Whereas chemical formula of nitriles is RCN, ester is RCOOR' and acid chlorides are RCOCl. As no hydrogen bonding occurs in any of these compounds because hydrogen atom is not being attached to an electronegative atom.
Thus, we can conclude that secondary amides are strongly hydrogen bonded in the liquid phase.
Answer:
Name Atomic Number Electron Configuration Period 1 Hydrogen 1 1s1 Helium 2 1s2 Period 2 Lithium 3 1s2 2s1 Beryllium 4 1s2 2s2 Boron 5 1s2 2s22p1 Carbon 6 1s2 2s22p2 Nitrogen 7 1s2 2s22p3 Oxygen 8 1s2 2s22p4 Fluorine 9 1s2 2s22p5 Neon 10 1s2 2s22p6 Period 3 Sodium 11 1s2 2s22p63s1 Magnesium 12 1s2 2s22p63s2 Aluminum 13
Answer: 6 moles
Take a look at the balanced chemical equation for this synthesis reaction
N 2(g] + 3 H 2(g] → 2 NH 3(g]
Notice that you have a 1:3 mole ratio between nitrogen gas and hydrogen gas. This means that, regardless of how many moles of nitrogen gas you have, the reaction will always consume twice as many moles of hydrogen gas.
So, if you have 2 moles of nitrogen taking part in the reaction, you will need
2 moles N 2 ⋅ 3 moles H 2 /1 mole N 2 = 6 moles H 2