Index fossils can help geologists compare rock Layers at Distance locations.
Index fossils help identify where Unconformities may have occurred.
Then that layer can be Compared to other locations.
Container must be made up of non metallic elements which can typically covalently bond and must have lone pairs of electrons dative bonds in order to allow further stability.
This problem could be solved easily using the Henderson-Hasselbach equation used for preparing buffer solutions. The equation is written below:
pH = pKa + log[(salt/acid]
Where salt represents the molarity of salt (sodium lactate), while acid is the molarity of acid (lactic acid).
Moles of salt = 1 mol/L * 25 mL * 1 L/1000 mL = 0.025 moles salt
Moles of acid = 1 mol/L* 60 mL * 1 L/1000 mL = 0.06 moles acid
Total Volume = (25 mL + 60 mL)*(1 L/1000 mL) = 0.085 L
Molarity of salt = 0.025 mol/0.085 L = 0.29412 M
Molarity of acid = 0.06 mol/0.085 L = 0.70588 M
Thus,
pH = 3.86 + log(0.29412/0.70588)
pH = 3.48
1A: The legs can be a adjusted, as well as the sand can be swapped out. It’s a very good design for running multiple tests.
1B: He could add books or something under the front or back legs in order to increase/decrease the incline, therefore imitating the hypothesis.
1C: He can change out the sand grains to finer ones, or coarser ones, and record his results of each test.
2: If he sets the model at a steep incline and tests it with coarse sand and fine sand, seeing which one makes a narrower, deeper hole.
Answer:
could the answer be boil the water away?
Explanation:
if the water gets boiled and evaporates, than you are left with the solids