Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
Answer:
To consume the 2.8 moles of CH4 we need 5.6 moles of O2 since the molar ratio is 1:2. We have only 3 moles of O2 ; therefore, O2 is the limiting reactant.
Explanation:
Many elements show very strong similarities to each other.<span>For example, lithium (Li), sodium (Na), and potassium (K) are all soft, very reactive metals.
</span>
The spoon should be connected to the negative terminal of the battery. The other electrode should be made of silver.
Answer:
1. Removing them to an area of fresh air. This helps to prevents further poisoning by the carbon monoxide and increase the amount of oxygen entering into the body. This will help to reduce the concentration of carbon monoxide binding oxygen
2. Administering pure oxygen goes a long way to enhance ventilation and increase the oxygen saturation to 100%. This will help to overcome the effect of the carbon monoxide and promote more hemoglobin binding