Given: In the given figure, there are two equilateral triangles having side 50 yards each and two sectors of radius (r) = 50 yards each with the sector angle θ = 120°
To Find: The length of the park's boundary to the nearest yard.
Calculation:
The length of the park's boundary (P) = 2× side of equilateral triangle + 2 × length of the arc
or, (P) = 2× 50 yards + 2× (2πr) ( θ ÷360°)
or, (P) = 2× 50 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or, (P) = 100 yards + 209.33 yards
or, (P) = 309.33 yards ≈309 yards
Hence, the option D:309 yards is the correct option.
Answer:
-54
Step-by-step explanation:
The given functions are


Now these are exponential curves and the bases for the functions are 3.5 & 1.5
Also the graph of g(x) is between f(x) & h(x)
Hence the value of base called the scale factor must be between 3.5 & 1.5.
4 & 5 are more than 3.5
0.9 is smaller than 1.5
But π = 3.14 lies between 3.5 & 1.5.
Hence the only option which can represent the graph of g(x) is

Option D) is the right answer
Answer:
I am not able to answer your question because I am unsure of what to solve for. :/
Step-by-step explanation:
Answer:
On the Y axis
Step-by-step explanation: