The other students in the lab should be notified next in this type of scenario.
<h3>What is an acid?</h3>
This is a substance which donates protons and is very corrosive. It also turns blue litmus paper red.
When it was spilled and baking soda was used to neutralize it on the floor , it is best to inform the other students too so as to prevent them from being exposed by mistake thereby reducing risk of injury.
Read more about Acid here brainly.com/question/25148363
#SPJ1
Explanation:
Equation of the reaction:
Br2(l) + Cl2(g) --> 2BrCl(g)
The enthalpy change for this reaction will be equal to twice the standard enthalpy change of formation for bromine monochloride, BrCl.
The standard enthalpy change of formation for a compound,
ΔH°f, is the change in enthalpy when one mole of that compound is formed from its constituent elements in their standard state at a pressure of 1 atm.
This means that the standard enthalpy change of formation will correspond to the change in enthalpy associated with this reaction
1/2Br2(g) + 1/2Cl2(g) → BrCl(g)
Here, ΔH°rxn = ΔH°f
This means that the enthalpy change for this reaction will be twice the value of ΔH°f = 2 moles BrCl
Using Hess' law,
ΔH°f = total energy of reactant - total energy of product
= (1/2 * (+112) + 1/2 * (+121)) - 14.7
= 101.8 kJ/mol
ΔH°rxn = 101.8 kJ/mol.
Answer:
50 g Sucrose
Explanation:
Step 1: Given data
- Concentration of the solution: 2.5%
Step 2: Calculate the mass of sucrose needed to prepare the solution
The concentration of the solution is 2.5%, that is, there are 2.5 g of sucrose (solute) every 100 g of solution. The mass of sucrose needed to prepare 2000 g of solution is:
2000 g Solution × 2.5 g Sucrose/100 g Solution = 50 g Sucrose
Answer:
+1
Explanation:
For the equation to be balanced, the total mass number and the total atomic number on both side of the equation but be equal.
This is illustrated:
For the mass number:
Left side: 22
Right side: 22 + 0 = 22
For the atomic number:
Left side: 11
Right side: 10 + x
11 = 10 + x
Collect like terms
x = 11 - 10
x = 1
See attachment for further explanation.