Answer:
built a special cavity where the electromagnetic quantum states resonate with the natural vibrations of the atoms. In doing so, one cancouple a photon-based oscillator to a mechanical oscillator, controlling the mechanical quantum states with visible light. The result is a prototype of a quantum transducer, a device that converts light energy into mechanical energy (sound energy)
Explanation:
Sound energy is created by vibrating particles of medium that propagates as a wave. So in order to convert light (electromagnetic wave) to sound wave it has to be converted into electric or magnetic signals. Then these signals can be converted into sound waves.
However, if you consider the particle nature of light. It contains momentum and after collision sets the other particles into oscillatory motion but the wavelength of these vibrations is too high to be considered as sound waves.
Answer:
Nitrogen molecule is 28 neuclons×1.67×10-27 kg/nucleon = 4.68 д 10-26 kg. So the average speed of a gas molecule is about 500 m/sec. This is roughly the speed of sound in a gas 340 m/sec. So the average kinetic energy of the gas molecules is related to the temperature of the gas.
I hope this is helpful
This is just addition. Put 2140.56 on top, line up 9.3456 under it appropriately. Doing this will give you the answer: 2149.9056
Answer:
10.5 g
Explanation:
Step 1: Given data
- Molar concentration of the solution (C): 0.243 M
- Volume of solution (V): 0.580 L
Step 2: Calculate the moles of solute (n)
Molarity is equal to the moles of solute divided by the liters of solution.
M = n/V
n = M × V
n = 0.243 mol/L × 0.580 L = 0.141 mol
Step 3: Calculate the mass corresponding to 0.141 moles of KCl
The molar mass of KCl is 74.55 g/mol.
0.141 mol × 74.55 g/mol = 10.5 g
Answer : Carbon tetrachloride,
will show the greatest freezing point lowering.
Explanation :
For non-electrolyte solution, the formula used for lowering in freezing point is,

where,
= lowering in freezing point
= molal depression constant
m = molality
As per question, the molality is same for all the non-electrolyte solution. So, the lowering in freezing point is depend on the
only.
That means the higher the value of
, the higher will be the freezing point lowering.
From the given non-electrolyte solutions, the value of
of carbon tetrachloride is higher than the other solutions.
Therefore, Carbon tetrachloride,
will show the greatest freezing point lowering.