We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
Depending in the category of the Hurricane, you make experience different levels of wind power and destruction. Hurricanes only have 5 categories ranking from Category 1 to Category 5. The smallest category is category 1 making category 5 the largest. The bigger the category, the more wind or destruction you'll experience.
Each element or compound has a molar mass, which is calculated by multiplying the atomic mass of each element by the amount of atoms of that element, and summing the results of each element. The molar mass is measured in g/mol. So you divide the mass in grams by the molar mass to get the amount of moles.
Example:
There are 5g of water.
Calculate the amount of moles.
The water's formula is H2O, so the molar mass of it is

g/mol.
The amount of moles is:
5g ÷ 18g/mol ~ 0.28mol
A. This is not a redox reaction. It is an example of combustion.
<h3>Combustion reaction of hydrocarbon</h3>
During the combustion of a hydrocarbon, the hydrocarbon reacts with oxygen to create carbon dioxide, water, and heat.
<h3>Example of combustion reaction</h3>
2C8H18 + 25O2 → 16CO2 + 18H2O
Thus, we can conclude that, this is not a redox reaction. It is an example of combustion.
Learn more about combustion here: brainly.com/question/9425444
#SPJ1
To work this out you do 400÷20=20