The formula for density is:

We know the density for mercury is 13.6 g/mL, and we know the mass of the sample is 53.8 g. Thus, we can plug these numbers into our equation and solve for volume.
The volume is unknown, so we can simply denote it as "x"

multiply both sides by x

The x's cancel out on the right side and you are left with

From here, simply divide both sides of the equation by 13.6 g/mL and solve for x.


Round to 3 significant figures, and your final answer is:

The volume of the sample of mercury was 3.96 mL.
There has to be a double bond then you put the rest into lone pairs
Answer : The net ionic equation will be,

Explanation :
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The given balanced ionic equation will be,

The ionic equation in separated aqueous solution will be,

In this equation,
are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,

Answer:
It would be the innate immune system or just the immune system
Explanation:
:)
Answer:
3.6 × 10⁻⁵ M
Explanation:
Ergosterol has a maximum absorbance at λ = 282 nm. The absorbance of an analyte is related to its concentration through the Beer-Lambert's law.
A = ε × <em>l</em> × c
where,
A: absorbance
ε: molar absorptivity
<em>l</em>: optical path length
c; molar concentration
c = A / ε × <em>l </em>= 0.43 / (11,900 M⁻¹cm⁻¹) × 1.00 cm = 3.6 × 10⁻⁵ M