Moles = mass / molar mass
<span>moles P = 0.422 g / 30.97 g/mol = 0.01363 mol </span>
<span>moles O = (0.967 g - 0.422g) / 16.00 g/mol = 0.03406 moles </span>
<span>So ratio moles P : moles O </span>
<span>= 0.01363 mol : 0.03406 mol </span>
<span>Divide each number in the ratio by the smallest number </span>
<span>(0.01363 / 0.01363) : (0.03406 / 0.01363) </span>
<span>= 1 : 2.5 </span>
<span>The empirical formula needs to be the smallest whole number ratio of atoms in the molecules. Since you have a non-whole number, multiply the ratio by the smallest number needed to make both number whole numbers. In this case x 2 </span>
<span>2 x (1 : 2.5) </span>
<span>= 2 : 5 </span>
Answer:
0.0445 M is the initial concentration of sulfurous acid.
Explanation:

To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


0.0445 M is the initial concentration of sulfurous acid.
Answer:
1.373 wt% Ca(OH)₂
Explanation:
Sample mix = 15.0g
Ca(OH)₂(aq) + 2HCl(aq) => CaCl₂(aq) + 2H₂O(l)
moles HCl = 0.2000g / 36 g·mol⁻¹ 0.0056 mol
moles Ca(OH)₂ = 1/2(moles HCl) = 1/2(0.0056 mol) = 0.0028 mol
mass Ca(OH)₂ = 0.0028 mol ( 74 g/mol ) = 0.206 g
mass % Ca(OH)₂ = (0.206/15.0)100% = 1.373 wt%
<span>The behavior, or reactivity, of elements in a group, or family will behave similarly because they have the same numbers of valence electrons. An example might be the alkali metals (with the exception of hydrogen, H, which is a gas) which form +1 ions in their compounds, have a relatively low melting point, and react violently with water. Other groups of atoms also show similar properties although different from the alkali metals. This type of behavior is one of the things that helps us categorize the elements into the periodic table of the elements. Mendeleev noticed similarities in the behavior of certain elements that originally allowed him to place them into families and develop that periodic chart</span>