The reaction;
O(g) +O2(g)→O3(g), ΔH = sum of bond enthalpy of reactants-sum of food enthalpy of products.
ΔH = ( bond enthalpy of O(g)+bond enthalpy of O2 (g) - bond enthalpy of O3(g)
-107.2 kJ/mol = O+487.7kJ/mol =O+487.7 kJ/mol +487.7kJ/mol =594.9 kJ/mol
Bond enthalpy (BE) of O3(g) is equals to 2× bond enthalpy of O3(g) because, O3(g) has two types of bonds from its lewis structure (0-0=0).
∴2BE of O3(g) = 594.9kJ/mol
Average bond enthalpy = 594.9kJ/mol/2
=297.45kJ/mol
∴ Averange bond enthalpy of O3(g) is 297.45kJ/mol.
ANSWER IS CONDUCTION. HOPE THIS HELPED!
<span>Biotic and Abiotic Factors Form Ecosystems. In a healthy forest community, interacting populations might include birds eating insects, squirrels
eating nuts from trees, mushrooms growing from decaying leaves or bark,
and raccoons fishing in a stream. In addition to how individuals in a
population interact with each other, let me know if it helps :)</span>
Answer:

Explanation:
The unbalanced nuclear equation is

We can insert the subscripts, because these are the atomic numbers of the elements

That leaves only the superscript of He to be determined,
The main point to remember in balancing nuclear equations is that the sums of the superscripts must be the same on each side of the equation.
Then
27 + x = 31, so x = 31 - 27 = 4
Then, your nuclear equation becomes

Answer:
D
Excess solar radiation due to a missing magnetic field.
Explanation: Solar proton events (SPEs) are bursts of energetic protons accelerated by the Sun. They occur relatively rarely and can produce extremely high radiation levels. Without thick shielding, SPEs are sufficiently strong to cause acute radiation poisoning and death.
Hope this hels
plz mark brainliest