Answer:
r = 3.787 10¹¹ m
Explanation:
We can solve this exercise using Newton's second law, where force is the force of universal attraction and centripetal acceleration
F = ma
G m M / r² = m a
The centripetal acceleration is given by
a = v² / r
For the case of an orbit the speed circulates (velocity module is constant), let's use the relationship
v = d / t
The distance traveled Esla orbits, in a circle the distance is
d = 2 π r
Time in time to complete the orbit, called period
v = 2π r / T
Let's replace
G m M / r² = m a
G M / r² = (2π r / T)² / r
G M / r² = 4π² r / T²
G M T² = 4π² r3
r = ∛ (G M T² / 4π²)
Let's reduce the magnitudes to the SI system
T = 3.27 and (365 d / 1 y) (24 h / 1 day) (3600s / 1h)
T = 1.03 10⁸ s
Let's calculate
r = ∛[6.67 10⁻¹¹ 3.03 10³⁰ (1.03 10⁸) 2) / 4π²2]
r = ∛ (21.44 10³⁵ / 39.478)
r = ∛(0.0543087 10 36)
r = 0.3787 10¹² m
r = 3.787 10¹¹ m
The speed of the wave is mathematically given as
v=2266.66m/s
A long wave with a period of about 15 minutes will travel across the oceans at a speed of approximately v=2266.66m/s
<h3>
Speed of the wave</h3>
Question Parameters:
A long wave with a period of about 15 minutes
Generally the equation for the Wave velocity is mathematically given as
v=\lambda * frequency
Where
f=1/t
Therefore
v=\lambda * frequency
v=\lambda * 1/t
Therefore, with wavelenght of the ocean as 34km
v=34*1000*1/15
v=2266.66m/s
For more information on Speed
brainly.com/question/4931057
We need to find the time it takes an electron to move in the given circuit.
The time taken for electrons to reach the starting motor from the battery is 60.65 minutes.
I = Current = 134 A
= Avogadro's number = 
A = Area = 
L = Length = 92.2 cm
= Density of copper = 
M = Molar mass of copper = 63.5 g/mol
= Number of valence electrons of copper = 1
e = Charge of electron = 
Number of charge carriers per unit volume is given by

Time taken is given by

The time taken for electrons to reach the starting motor from the battery is 60.65 minutes.
Learn more:
brainly.com/question/1426683
brainly.com/question/170663
Answer:
9.67 A
Explanation:
The weight of a student with a mass of m = 75 kg is:

where g=9.8 m/s^2 is the acceleration due to gravity.
We want the magnetic force on the wire to be equal to this weight. The magnetic force on the wire is

where
I is the current in the wire
L = 2.0 m is the length of the wire
B = 38 T is the magnetic field
is the angle between the direction of B and L
Since we want W=F, we can write

And we can solve it to find the current I:
