Mira is much bigger than the Sun.
Only very massive stars will go through a supernova stage, causing the outer layer to explode away and the core to collapse in on itself, becoming very dense.
Answer:
U = 0.413 J
Explanation:
the potential energy between two charges q1 and q2 is given by the following formula:
(1)
k: Coulomb's constant = 8.98*10^9 NM^2/C^2
q1: first charge = 4.6 μC = 4.6*10^-6 C
q2: second charge = 1.0 μC*10^-6 C
r: distance between charges = 10.0 cm = 0.10 m
You replace the values of all variables in the equation (1):

Hence, the energy between charges is 0.413 J
........................z......
Answer:
K = -½U
Explanation:
From Newton's law of gravitation, the formula for gravitational potential energy is;
U = -GMm/R
Where,
G is gravitational constant
M and m are the two masses exerting the forces
R is the distance between the two objects
Now, in the question, we are given that kinetic energy is;
K = GMm/2R
Re-rranging, we have;
K = ½(GMm/R)
Comparing the equation of kinetic energy to that of potential energy, we can derive that gravitational kinetic energy can be expressed in terms of potential energy as;
K = -½U
I’m pretty sure the answer would be D, sorry if it’s not correct!