Answer:

Explanation:
From the question we are told that:
Speed of light 
Generally the equation for Average Speed is mathematically given by

Where
d=Distance between the Earth and the sun

Therefore



Since m and n is given in the form of

Therefore


Answer:
c. length of the wall or column and the rate of placement of the concrete
Explanation:
when designing for wall and column form-works, it is of utmost important to know the length of the wall and the type of concrete placement to be used.
Concrete placement has methods and precaution to be taken when doing the form work
if the concrete placement is manually (hand or funnel) the form work height should not be more than 1 m to enable easy compaction and vibration of concrete in the form.
Also, if the form work length is too long and it is not well reinforced, it tends to burg if the force apply during concrete placement or during vibration is much.
Answer:
1- b: 2- a : 3- c : 4- d
Explanation:
it starts 2 move away from strting point, then no motion, then moves toward the start, the slows up.
Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.
Answer:
D) The ball exerts a force on the wall and the wall exerts a force back.
Explanation:
Newton's third law of motion states that:
"When an object A exerts a force on another object B, then object B exerts an equal and opposite force on object A"
In this problem, we can identify (for instance) object A with tha ball and object B with the wall. Therefore, if we apply Newton's third law, we get:
The ball (object A) exerts a force on the wall (object B), therefore the wall (object B) exerts an equal and opposite force on the ball (object A). So, option D is the correct one.