1) boiling points increase as molecular weight increase and vice versa. This is due to the increase in van der waals forces between molecules.
2) branching decreases the melting and boiling i.e increase in branching decrease boiling point and melting point. This is due to the fact that there are less point of contact between neighbouring molecules, so molecules are farther apart from each other, which means weaker van der waals(London forces) less energy is required to overcome these force of attraction.
3) In homolytic fission each of the fragment retain one of the bonded electron and radicals are made if the molecule is neutral. In heterolytic fission one fragment gets both bonding electron.
The energy for the heterolytic fission is higher because energy is not only needed to break the covalent bond but also to overcome the force of attraction between oppositely charged ions formed.
The bubbles that were observed after the mixing of the two substances is one of the products of the reaction. It is the carbon dioxide that is produced. To determine the mass of this gas produced, we need to remember the Law of conservation of mass where mass cannot be created or destroyed. With this, we can say that the total mass that goes in a process should be equal to the mass that is goes out of the process no matter what the reaction is. We do as follows:
Mass of reactants = mass of products
11.00 + 44.55 = 51.04 + mass of carbon dioxide
mass of carbon dioxide = 4.51 g
To calculate the new pressure, we can use Boyle’s law to relate these two scenarios (Boyle’s law is used because the temperature is assumed to remain constant). Boyle’s law is:
P1V1 = P2V2,
Where “P” is pressure and “V” is volume. The pressure and volume of the first scenario is 215 torr and 51 mL, respectively, and the second scenario has a volume of 18.5 L (18,500 mL) and the unknown pressure - let’s call that “x”. Plugging these into the equation:
(215 torr)(51 mL) =(“x” torr)(18,500 mL)
x = 0.593 torr
The final pressure exerted by the gas would be 0.593 torr.
Hope this helps!
Use M x V = M' x V'
0.300 x V = 0.100 x 250
V = .......... ml