Answer:
6.82g
0.59moles
Explanation:
1. What is the mass sample of 0.0500 moles of zinc chloride ?
Given parameters:
Number of moles ZnCl₂ = 0.05moles
Unknown:
Mass of the sample = ?
Solution:
To find the mass of a substance using the number of moles, it would be pertinent to understand what mole is.
A mole is a substance that contains the avogadro's number of particles.
It relates to the mass using the expression below;
Mass of a substance = number of moles x molar mass
Molar mass of ZnCl₂;
Atomic mass of Zn = 65.4g/mol
Cl = 35.5g/mol
Molar mass = 65.4 + 2(35.5) = 136.4g/mole
Mass of a substance = 0.05 x 136.4 = 6.82g
2. How many moles of potassium sulfide are in a 65.50g sample?
Given parameters:
Mass of K₂S = 65.5g
Unknown:
Number of moles = ?
Solution:
The number of moles of any substance is related to mass using the expression below;
Number of moles = 
Molar mass of K₂S = 2(39) + 32 = 110g/mol
Number of moles =
= 0.59moles
Answer:
O2 is a covalent substance while NaCl is an ionic substance
Explanation:
In O2 molecule, the bond is between 2 oxygen atoms which are non - metals. Thus, this is a covalent bond since it involves 2 non metals.
Whereas, for the NaCl molecule, the bond is between a metal sodium (Na) and a non metal Chloride(Cl) and thus we can say this is an ionic bond.
Thus the difference is that O2 is a covalent substance while NaCl is an ionic substance.
Answer:
21.6 g
Explanation:
The reaction that takes place is:
First we<u> convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄
- 64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂
0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we <u>calculate how many moles of water are produced</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.6 mol CH₄ *
= 1.2 mol H₂O
Finally we<u> convert 1.2 moles of water into grams</u>, using its <em>molar mass</em>:
- 1.2 mol * 18 g/mol = 21.6 g
Answer:
The unknown solution had the higher concentration.
Explanation:
When two solutions are separated by a semi-permeable membrane, depending on the concentration gradient between the two solutions, there is a tendency for water molecules to move across the semi-permeable in order to establish an equilibrium concentration between the two solutions. This movement of water molecules across a semi-permeable membrane in response to a concentration gradient is known as osmosis. In osmosis, water molecules moves from a region of lower solute concentration or higher water molecules concentration to a region of higher solute concentration or lower water molecules concentration until equilibrium concentration is attained.
Based on the observation that when the glucose solution described in part A is connected to an unknown solution via a semipermeable membrane, the unknown solution level rises, it means that water molecules have passed from the glucose solution through the semipermeable membrane into the unknown solution. Therefore, the solution has a higher solute concentration than the glucose solution.
Using a calculator:
(2.568 x 5.8)/4.186 = 3.5581460…
= 3.56 (3sf)
You didn’t specify the correct number of significant figures needed.