Answer:
none of them are equal to one mole
Answer:
B.0.2 J/g°C
Explanation:
From the attached picture;
- Heat attained in the solid phase is 200 Joules
- Change in temperature is 50°C ( from 0°C to 50°C)
- Mass of the solid is 20 g
We are required to determine the specific heat capacity of the substance;
- We need to know that Quantity of heat is given by the product of mass,specific heat capacity and change in temperature.
- That is; Q = mcΔT
Rearranging the formula;
c = Q ÷ mΔT
Therefore;
Specific heat = 200 J ÷ (20 g × 50°c)
= 0.2 J/g°C
Thus, the specific heat of the solid is 0.2 J/g°C
Answer:
isotopes of hydrogen are protium,deuterium and tritium
This can be done through electrolysis. Electrolysis is the separation of a substance into two or more substances that may differ from each other and from the original substance by passing an electric current through a solution that contains ions.
In the case of copper, we use a copper (II) sulphate solution which we put in a large beaker. The impure copper will be used as the positive electrode (anode) and for the negative electrode (cathode) will be a bar of pure copper.
When the electric current is switched on, the bar of pure copper which is the cathode increases greatly in size as copper ions leave the anode of impure copper and attach to the cathode. The anode becomes smaller and smaller as it loses copper ions until all that is left of it is impurities in form of a sludge beneath it.
Answer:
(a) 
(b) 
(c) 
(d) 
(e) 
Explanation:
To calculate de pH of an acid solution the formula is:
![pH = -Log ([H^{+}]) = 1](https://tex.z-dn.net/?f=pH%20%3D%20-Log%20%28%5BH%5E%7B%2B%7D%5D%29%20%3D%201)
were [H^{+}] is the concentration of protons of the solution. Therefore it is necessary to know the concentration of the protons for every solution in order to solve the problem.
(a) and (c) are strong acids so they dissociate completely in aqueous solution. Thus, the concentration of the acid is the same as the protons.
(b) and (e) are strong bases so they dissociate completely in aqueous solution too. Thus, the concentration of the base is the same as the oxydriles. But in this case it is necessary to consider the water autoionization to calculate the protons concentration:
![K_{w} =[H^{+} ][OH^{-}]=10^{-14}](https://tex.z-dn.net/?f=K_%7Bw%7D%20%3D%5BH%5E%7B%2B%7D%20%5D%5BOH%5E%7B-%7D%5D%3D10%5E%7B-14%7D)
clearing the ![[H^{+} ]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D)
![[H^{+} ]=\frac{10^{-14}}{[OH^{-}]}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D%3D%5Cfrac%7B10%5E%7B-14%7D%7D%7B%5BOH%5E%7B-%7D%5D%7D)
(d) is a weak base so it is necessary to solve the equilibrium first, knowing 
The reaction is
→
so the equilibrium is

clearing the <em>x</em>

![x=[H^{+}]=4.93x10^{-10}](https://tex.z-dn.net/?f=x%3D%5BH%5E%7B%2B%7D%5D%3D4.93x10%5E%7B-10%7D)