Option c) 1.5 V
Explanation:
<em>As the circuit is build in series first we will find the current passing through the complete circuit. Current stays the same in each element is the series cirucuit, however, the voltage is different.</em>
Voltage is given by the following formula:
V = IR
<em>Because we have to find current through whole circuit, we will first find resistance of the whole circuit.</em>
Equivalent Resistance R(eq): R1 + R2 = 60 + 60 = 120 ohm
Current passing through whole circuit be:
= 0.025
Now we will find out the voltage between C and D:
Current stays the same in series circuit: I = 0.025 c
Resistance between C and D is, R = 60 ohm
Voltage becomes, V = IR = 0.025 * 60 = 1.5 V
Openness to experience, Neuroticism, agreeableness, Extroversion, Conscientiousness
N stands for Newton
2- upload the graph..
<h2>Answer:</h2>
<u>By wrapping the wire along a solenoid and connecting it to electricity</u>
<h2>Explanation:</h2>
If you wrap a copper wire into coils and run an electrical current through it, you will create a magnetic field. If you rotate a permanent magnet as opposed to an item that has been magnetized inside a coil of copper wire, you can create an electrical current. The strength of magnetic field generated is proportional to the amount of current through the winding.
Vo = 18 m/s
angle 35 degrees
1) Components of the initial velocity
Vox = Vo*cos(35) = 18*cos(35) m/s = 14.74 m/s
Voy = Vo* sin(35) = 18*sin(35) m/s = 10.32 m/s
2) Equations of postion:
x = Vox*t
y = Voy*t - gt^2 / 2
3) Calculations
A) t = 0.5 s, t = 1.0 st = 1.5 s, t = 2.0 s
x = 14.74 * t
t = 0.5 s => x = 14.74 m/s * 0.5s = 7.37 m
t = 1.0 s => x = 14.74 m/s * 1.0s = 14.74 m
t = 1.5s => x = 22.11 m
t = 2s => x = 29.48 m
B)
y = Voy*t - gt^2 / 2
Voy = 10.32 m/s
g = 10 m/s (approximation)
y = 10.32*t - 5t^2
t = 0.5 s=> y = 3.91m
t = 1 s => y = 5.32m
t = 1.5 s => y = 4.23m
t = 2 s => y = 0.64 m