Answer : The specific heat capacity of the alloy 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of alloy = ?
= specific heat of water = 
= mass of alloy = 21.6 g
= mass of water = 50.0 g
= final temperature of system = 
= initial temperature of alloy = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the specific heat capacity of the alloy 
The speed of something in any given direction.
Explanation:
Given that,
(a) Work done by the electric field is 12 J on a 0.0001 C of charge. The electric potential is defined as the work done per unit charged particles. It is given by :



(b) Similarly, same electric field does 24 J of work on a 0.0002-C charge. The electric potential difference is given by :



Therefore, this is the required solution.
A freight car of mass 20,000 kg moves along a frictionless level railroad track ... After the push the skateboarder II moves with a velocity of 2 m/s to ... After the collision the cars stick to each other and ... diver jumps with a velocity of 3 m/s in opposite ... A 10 kg object moves at a constant velocity 2 m/s to the right and collides
Before coming into conclusion first we have to understand both scalar and vector .
A scalar quantity is a physical quantity which has only magnitude for it's complete specification.
A vector quantity is that physical quantity which not only requires magnitude but also possesses direction for it's complete specification.
So the most important factor that differentiate vector from scalar is the direction.
As per the question the student is doing an experiment where he is recording the data obtained during the process.
In order to arrange them in data table, he should ask about the direction of the quantity under consideration.
Hence the correct option is the third option(C)i.e does the measurement include direction?