The atom<span> then has more protons than electrons and so it will be positively charged, a positive </span>ion<span>. Example: A </span>magnesium atom<span> may lose two electrons and </span>become<span> a Mg2+ </span>ion<span>. Non-metal </span>atoms<span> may gain electrons and </span>become<span> negatively charged. ... (It loses two electrons.)</span>
The question requires us to explain the differences in radii of neutral atoms, cations and anions.
To answer this question, we need to keep in mind that a neutral atom presents the same number of protons (positive particles) and electrons (negative particles). Another important information is that the protons are located in the nucleus of the atom, while the electrons are around the nucleus. Also, there is an electrostatic force between protons and electrons, which means that they the protons tend to attract the electrons to the nucleus.
While a neutral atom presents the same number of protons and electrons, a cation is an ion with positive charge, which means it has lost one or more electrons. In a cation, the balance between protons and electrons doesn't exist anymore: now, there is more positive than negative charge (more protons than electrons), and the overall attractive force that the protons have for the electrons is increased. As a result, the electrons stay closer to the nucleus and the radius of a cation is smaller than the neutral atom from which it was derived.
On the other side, anions present negative charge, which means they have received electrons. Similarly to cations, the balance between protons and electrons doesn't exist anymore, but in this case, there are more electrons than protons. In an anion, the overall attractive force that the protons have for the electrons is decreased. As a result, the electrons are "more free" to move and, as they are not so attracted to the nucleus, they tend to stay farther from the positive nucleus compared to the neutral atom - because of this, the radius of an anion is larger than the neutral atom from which it was derived.
<span>Answer: 100 ml
</span>
<span>Explanation:
1) Convert 1.38 g of Fe₂S₃ into number of moles, n
</span>i) Formula: n = mass in grass / molar mass
<span>
ii) molar mass of </span><span>Fe₂S₃ =2 x 55.8 g/mol + 3 x 32.1 g/mol = 207.9 g/mol
</span>
iii) n = 1.38 g / 207.9 g/mol = 0.00664 moles of <span>Fe₂S₃
</span>
<span>2) Use the percent yield to calculate the theoretical amount:
</span>
<span>65% = 0.65 = actual yield/ theoretical yield =>
</span>theoretical yield = actual yield / 0.65 = 0.00664 moles / 0.65 = 0.010 mol <span>Fe₂S₃</span><span>
3) Chemical equation:
</span>
<span> 3 Na₂S(aq) + 2 FeCl₃(aq) → Fe₂S₃(s) + 6 NaCl(aq)
4) Stoichiometrical mole ratios:
</span>
<span>3 mol Na₂S : 2 mol FeCl₃ : 1 mol Fe₂S₃ : 6 mol NaCl
5) Proportionality:
</span>2moles FeCl₃ / 1 mol Fe₂S₃ = x / 0.010 mol Fe₂S₃
<span>
=> x = 0.020 mol FeCl₃
6) convert 0.020 mol to volume
</span>
<span>i) Molarity formula: M = n / V
</span>
<span>ii) V = n / M = 0.020 mol / 0.2 M = 0.1 liter = 100 ml
</span>