For a better understanding of the answer given here, please go through the diagram in the attached file.
The diagram assumes that the base of the hexagonal pyramid is an exact fit (has same dimensions as the face of the hexagonal prism).
As can be seen from the diagram, the common vertices are A,B,C,D,E,F which are 6 in number.
The bottom vertices are G,H,I,J,K,L, which, again are 6 in number.
The Apex of the pyramid, P is one more vertex.
Thus, the total number of vertices in a Hexagonal pyramid is located on top of a hexagonal prism will be the sum of all these vertices and thus will be:
6+6+1=13
Answer:
$720 in one week
Step-by-step explanation:
40 * 18
$720
Best of Luck!
Answer:
g^5h^2
Step-by-step explanation:
12g^5h^4, g^5h^2
This is one way of doing it. Break down every number and every variable into a product of the simplest factors. Then see how many of each factor appear in both monomials.
12g^5h^4 = 2 * 2 * 3 * g * g * g * g * g * h * h * h * h
g^5h^2 = g * g * g * g * g * h * h
So far you see every single prime factor of each monomial.
Now I will mark the ones that are present in both. Those are the common factors.
12g^5h^4 = 2 * 2 * 3 * g * g * g * g * g * h * h * h * h
g^5h^2 = g * g * g * g * g * h * h
The greatest common factor is the product of all the factors that appear in both monomials.
GCF = g * g * g * g * g * h * h = g^5h^2
60*115/100=69
Retail price is 69
All you have to do is put the walking amount in for w and basketball in for b. Do it for all of these, if it is less than 400 or greater than 600, it is not a solution.
(4 x 40) + (5 x 40) = 360 so reject because it is less than 400.
I'll let you do the rest.