Answer:
fb = 240.35 Hz
Explanation:
In order to calculate the beat frequency generated by the first modes of each, organ and tube, you use the following formulas for the fundamental frequencies.
Open tube:
(1)
vs: speed of sound = 343m/s
L: length of the open tube = 0.47328m
You replace in the equation (1):
Closed tube:

L': length of the closed tube = 0.702821m

Next, you use the following formula for the beat frequency:

The beat frequency generated by the first overtone pf the closed pipe and the fundamental of the open pipe is 240.35Hz
Answer:
280 N
Explanation:
acceleration = v2-v1 / time taken = (2-4 )/ 0.05 = -40 m/s^2 ( neg sign indicates slowing down )
force exerted = ma = 7 kg x -40 m/s^2 = - 280 N ( neg sign means opposite direction of initial velocity )
since the 7 kg ball is slowing down, the direction of force will be opposite of the initial velocity , and it will be 280 N
<h2>Isaac Newton's First Law of Motion states, "A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force." What, then, happens to a body when an external force is applied to it? That situation is described by Newton's Second Law of Motion. </h2><h2>
equation as ∑F = ma
</h2><h2>
</h2><h2>The large Σ (the Greek letter sigma) represents the vector sum of all the forces, or the net force, acting on a body. </h2><h2>
</h2><h2>It is rather difficult to imagine applying a constant force to a body for an indefinite length of time. In most cases, forces can only be applied for a limited time, producing what is called impulse. For a massive body moving in an inertial reference frame without any other forces such as friction acting on it, a certain impulse will cause a certain change in its velocity. The body might speed up, slow down or change direction, after which, the body will continue moving at a new constant velocity (unless, of course, the impulse causes the body to stop).
</h2><h2>
</h2><h2>There is one situation, however, in which we do encounter a constant force — the force due to gravitational acceleration, which causes massive bodies to exert a downward force on the Earth. In this case, the constant acceleration due to gravity is written as g, and Newton's Second Law becomes F = mg. Notice that in this case, F and g are not conventionally written as vectors, because they are always pointing in the same direction, down.
</h2><h2>
</h2><h2>The product of mass times gravitational acceleration, mg, is known as weight, which is just another kind of force. Without gravity, a massive body has no weight, and without a massive body, gravity cannot produce a force. In order to overcome gravity and lift a massive body, you must produce an upward force ma that is greater than the downward gravitational force mg. </h2><h2>
</h2><h2>Newton's second law in action
</h2><h2>Rockets traveling through space encompass all three of Newton's laws of motion.
</h2><h2>
</h2><h2>If the rocket needs to slow down, speed up, or change direction, a force is used to give it a push, typically coming from the engine. The amount of the force and the location where it is providing the push can change either or both the speed (the magnitude part of acceleration) and direction.
</h2><h2>
</h2><h2>Now that we know how a massive body in an inertial reference frame behaves when it subjected to an outside force, such as how the engines creating the push maneuver the rocket, what happens to the body that is exerting that force? That situation is described by Newton’s Third Law of Motion.</h2><h2 />
The upward force exerted by the elevator floor on the passenger is 7.6 times mass of the passenger.
<h3>What is force?</h3>
A force in physics is an effect that has the power to alter an object's motion. An object with mass can change its velocity, or accelerate, as a result of a force. An obvious way to describe force is as a push or a pull. A force is a vector quantity since it has both magnitude and direction.
Given in question elevator accelerates downwards with an acceleration of 1.2 m/s². There is acceleration due to gravity working downward which is 9.8 m/s².
So, net acceleration due to gravity is given as 9.8 - 1.2 = 7.6 m/s²
The upward force exerted by the elevator floor on the passenger is mass times acceleration, 7.6 times mass of passenger.
To learn more about force refer to the link:
brainly.com/question/13191643
#SPJ1