Answer:
* Experiment with a higher range of materials
* Use a galvanometer.
* Vary in number of coils of the electromagnet
Explanation:
This is an experiment of electricity and magnetism, in general the best way to improve the results are:
* Experiment with a higher range of materials
allowing to know the scope of the initial assumptions
* Use a galvanometer.
The more accurate the readings the error of the derived quantities is the less which will improve the precision of the experiment.
* Vary in number of coils of the electromagnet
Since it allows to have greater magnetic fields and therefore expand the range of measurements
If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
Answer:
Mumbai
Explanation:
Because Mumbai is a coastal city
due to high humidity,vigorous rusting damages all the iron structures
∴ rusting is a major problem in Mumbai
Answer:
The answer is I=70,513kgm^2
Explanation:
Here we will use the rotational mechanics equation T=Ia, where T is the Torque, I is the Moment of Inertia and a is the angular acceleration.
When we speak about Torque it´s basically a Tangencial Force applied over a cylindrical or circular edge. It causes a rotation. In this case, we will have that T=Ft*r, where Ft is the Tangencial Forge and r is the radius
Now we will find the Moment of Inertia this way:
->
Replacing we get that I is:
Then
In case you need to find extra information, keep in mind the Moment of Inertia for a solid cylindrical wheel is:
The North Magnetic Pole is the point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downwards (in other words, if a magnetic compass needle is allowed to rotate about a horizontal axis, it will point straight down). There is only one location where this occurs, near (but distinct from) the Geographic North Pole and the Geomagnetic North Pole.