<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
Reducing agents are defined as the agents which help the other substance to get reduced and itself gets oxidized. They undergo oxidation reaction.

For determination of reducing agents, we will look at the oxidation potentials of the substance. Oxidation potentials can be determined by reversing the standard reduction potentials.
For the given options:
- <u>Option a:</u>

This ion cannot be further oxidized because +1 is the most stable oxidation state of silver.
- <u>Option b:</u>

This metal can easily get oxidized to
ion and the standard oxidation potential for this is 0.13 V

- <u>Option c:</u>

This metal can easily get oxidized to
ion and the standard oxidation potential for this is 0.0 V

- <u>Option d:</u>

This metal can easily get oxidized to
ion and the standard oxidation potential for this is -0.80 V

- <u>Option e:</u>

This ion cannot be further oxidized because +2 is the most stable oxidation state of magnesium.
By looking at the standard oxidation potential of the substances, the substance having highest positive
potential will always get oxidized and will undergo oxidation reaction. Thus, considered as strong reducing agent.
From the above values, the correct answer is Option b.
Answer:
A link is a fastening unit that attaches two parts of an object together
Different types of links have different characteristics
The correct option is COVALENT BONDS.
A Lewis acid is defined as a substance which accept a pair of electron while a Lewis base refers to a substance that donate an unshared pair of electrons to another chemical specie with which it shared the donated pair of electrons.
Lewis acid and Lewis base react together to form salt and water. This type of reaction is called neutralization reaction. The neutralization reaction of Lewis acid and Lewis base involves electron pairs transfer, thus, there is an increase in the number of covalent bonds during this reaction.