Enthalpy is a state function
Explanation:
The Hess's law allows us to determine the enthalpy change of a reaction because enthalpy is a state function. It does not depend on the individual path take in going from reactants to products in the reaction.
- Enthalpy changes are the heat changes accompanying physical and chemical changes.
- It is the difference between the heat content of product in the final state and the reactants.
- Enthalpy changes for some reactions are not easily measurable experimentally.
- To calculate such heat changes, we apply the Hess's law of heat summation.
- The law states that "the heat change of a reaction is the same whether it occurs in a step or several steps".
- The Hess's law is simply based on the first law of thermodynamics by which we know that energy is conserved in every system.
learn more:
Hess's law brainly.com/question/11293201
#learnwithBrainly
Answer:
A. Boiling point = 59 °C, Melting point = -7.2°C, triple point = -7.3°C
Explanation:
Answer:
Generally, observed behavior that can be formulated into a statement, sometimes mathematical in nature, is called a natural law- D.
Answer:
A. Mafic; iron and/or magnesium
Explanation:
Let's find the answer by naming some minerals and their chemistry.
Mafic minerals are dark-colored whereas felsic minerals are light-colored, thats way mafic rocks are dark-colored because they are mainly composed by mafic minerals and the other way around for felsic rocks.
But remember that mafic minerals as amphiboles, pyroxenes or biotites, involve in their chemical structure iron and/or magnesium. Although calcium and sodium can be incorporated in amphiboles and clinopyroxenes, they are not involved in orthopyroxenes and biotites. On the other hand, although potassium is involved in biotite and in some extent in amphiboles, this element is not involved in pyroxenes.
So in conclusion, mafic minerals are usually dark-colored because they involve iron and/or magnesium in their chemical structures.