Answer:
i. Sobolo is a Ghanian drink that is produced from red hibiscus flower that has an average pH of 6.7
It contains cyanidin and anthocyanins, which is a red pigment that is red in an acidic medium and changes green when introduced in a basic medium that has a high pH
The pH at the rectum of the digestive system = 5 to 8 (Slightly basic)
Therefore, what made the stool of Akosua green is that the sobolo drink changes to green in basic solution
ii. The stool which appeared green because she took sobolo turn into bright red upon mixing with the acidic WC water because of the presence of anthocyanins in sobolo, it turns red in an acidic medium
iii. Sobolo which turns green, or blue in a basic medium and red in an acidic medium can be used as a litmus solution to test the pH of a given substance
Explanation:
Sobolo or soobolo in Ghana is a name for the Hibiscus tea or tisane, which is made from calyces of the hibiscus plant, and has a sour (tangy) taste and appears bright red in color
Answer: C
Explanation:
A. Shows 3-Hexyne (NOT 2-HEXYNE)
B. Shows 7 carbons (too many) (NOT 2-HEXYNE)
C. Shows a triple bond (yne) and 6 carbons and it's on the second carbon (2-HEXYNE)
D. Shows two substitent on the second carbon but the triple bond is on the 3rd carbon so it's 2,2-dimethyl-3-heptyne (NOT 2-HEXYNE)
Answer:
The main competing reaction when a primary alkyl halide is treated with alcoholic potassium hydroxide is SN2 substitution.
Explanation:
The relative percentage of products of the reaction between an alkyl halide and alcoholic potassium hydroxide generally depends on the structure of the primary alkylhalide. The attacking nucleophile/base in this reaction is the alkoxide ion. Substitution by SN2 mechanism is a major competing reaction in the elimination reaction intended.
A more branched alkyl halide will yield an alkene product due to steric hindrance, similarly, a good nucleophile such as the alkoxide ion may favour SN2 substitution over the intended elimination (E2) reaction.
Both SN2 and E2 are concerted reaction mechanisms. They do not depend on the formation of a carbocation intermediate. Primary alkyl halides generally experience less steric hindrance in the transition state and do not form stable carbocations hence they cannot undergo E1 or SN1 reactions.
SN2 substitution cannot occur in a tertiary alkyl halides because the stability of tertiary carbocations favours the formation of a carbocation intermediate. The formation of this carbocation intermediate will lead to an SN1 or E1 mechanism. SN2 reactions is never observed for a tertiary alkyl halide due to steric crowding of the transition state. Also, with strong bases such as the alkoxide ion, elimination becomes the main reaction of tertiary alkyl halides.
Answer:
the first one is branched, the second one is also branched and the third one is cycloalkane