Answer is: 8568.71 of baking soda.
Balanced chemical reaction: H₂SO₄ + 2NaHCO₃ → Na₂SO₄ + 2CO₂ + 2H₂O.
V(H₂SO₄) = 17 L; volume of the sulfuric acid.
c(H₂SO₄) = 3.0 M, molarity of sulfuric acid.
n(H₂SO₄) = V(H₂SO₄) · c(H₂SO₄).
n(H₂SO₄) = 17 L · 3 mol/L.
n(H₂SO₄) = 51 mol; amount of sulfuric acid.
From balanced chemical reaction: n(H₂SO₄) : n(NaHCO₃) = 1 :2.
n(NaHCO₃) = 2 · 51 mol.
n(NaHCO₃) = 102 mol, amount of baking soda.
m(NaHCO₃) = n(NaHCO₃) · M(NaHCO₃).
m(NaHCO₃) = 102 mol · 84.007 g/mol.
m(NaHCO₃) = 8568.714 g; mass of baking soda.
Answer:
All atoms heavier than barium
Explanation:
In the periodic table, elements are divided into blocks. We have the;
s- block elements
p- block elements
d- block elements
f- block elements
However, immediately after Barium, we now encounter elements that have f-orbitals. Barium possesses a fully filled d-orbital. Hence after it, we see elements with 4f and 5f orbitals called the Lanthanides and actinides. The elements following the lanthanide and actinide series possess completely filled f-orbitals as inner orbitals.
Hence elements heavier than barium all possess f-orbitals.
The answer is FOUR 4
hope this helps ;)
Answer: The answer is C light pretty obvious.
Explanation: