Answer:
1.51367e+10 inches
Explanation:
1 mile = 63360
63360 x 238900 = 15136704000
Hope this helped!
Answer:
308 moles of sodium
Explanation:
The balanced equation for the chemical reaction between sodium metal (Na) and water (H₂O) is the following:
2 Na(s) + 2 H₂O → 2 NaOH(aq) + H₂(g)
From the equation, we can see that 2 moles of Na react with 2 moles of H₂O to give 2 moles of NaOH and 1 mol of H₂ (hydrogen gas). So the stoichiometric mole ratio between Na and H₂ is: 2 mol Na/1 mol H₂. Thus, we multiply the mole ratio by the moles of H₂ to be produced to obtain the moles of Na required:
moles of Na required = 2 mol Na/1 mol H₂ x 154 moles H₂ = 308 moles Na
Therefore, 308 moles of sodium are needed to produce 154 moles of hydrogen gas.
<span>The solid lines between N and Mg are actually ionic bonds. N has 5 valence electrons (2 of which are paired). Of the 3 that are unpaired, 2 are part of covalent bonds with adjacent carbon atoms. N accepts an extra electron to complete its octet, but gets a formal charge of -1. This allows for formation of an ionic bond with Mg, which is +2. Two of these charged N atoms therefore neutralize the charge of the central Mg. As for the coordinate (dative) covalent bonds, Mg has empty orbitals - the ionic bonds with the charged N atoms give it only 4/8 possible valence electrons.
The other two N atoms (dotted lines) have a formal charge of 0 since they form three covalent bonds with adjacent carbon atoms, but they still have a lone pair. Therefore, just to improve stability, each of these N atoms can "donate" its lone pair to Mg in order to complete its octet.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Photosynthesis is the process where plants create energy. It requires water, carbon dioxide and sunlight. The end result is glucose, which the plants consume, and oxygen. Cellular respiration requires oxygen and glucose. The end result is carbon dioxide, ATP, and water.