The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
The answer is A. you sre correct!
4, because there are 4 quarts in 1 gallon.
Another way to think about it is 1 gallon= $1 and 1 quart= 25 cents
There are 4 quarters in a dollar.
Hope this helped..
The density is calculated as mass per volume, so if we want to solve for mass, we would multiply density by volume.
For Part A: if we have a density of 0.69 g/mL, and a volume of 280 mL, multiplying these will give a mass of: (0.69 g/mL)(280 mL) = 193.2 g. Rounded to 2 significant figures, this is 190 g gasoline.
For Part B: if we have a density of 0.79 g/mL, and a volume of 190 mL, multiplying these will give a mass of: (0.79 g/mL)(190 mL) = 150.1 g. Rounded to 2 significant figures, this is equal to 150 g ethanol.
In nuclear physics and nuclear chemistry, nuclear fission is either a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits<span> into smaller parts (lighter </span>nuclei<span>). Hope this helps</span>