<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
To calculate the hybridization of
, we use the equation:
![\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5BV%2BN-C%2BA%5D)
where,
V = number of valence electrons present in central atom (S) = 6
N = number of monovalent atoms bonded to central atom = 0
C = charge of cation = 0
A = charge of anion = 0
Putting values in above equation, we get:
![\text{Number of electron pair}=\frac{1}{2}[6]=3](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5B6%5D%3D3)
The number of electron pair around the central metal atom are 3. This means that the hybridization will be
and the electronic geometry of the molecule will be trigonal planar.
Hence, the correct answer is Option D.
Reaction
2AgNO₃ + Cu ⇒ Cu(NO₃)₂ + 2Ag
mol silver (Ag): 95.3 : 108 g/mol = 0.882
mol copper nitrate (Cu(NO₃)₂): 82.9 : 187.5 g/mol = 0.441
mol Ag = 2 x mol Cu(NO₃)₂, so 0.441 being the mole basis of the reactants
mol Cu = 0.441
mass Cu = 0.441 x 63.5 g/mol = 28 g
mol AgNO₃ = 0.882
mass AgNO₃ = 0.882 x 170 g/mol = 149.94 g
Answer:
SiS2, silicone disulfide, is a linear, nonpolar compound.
Answer:
The molar concentration of Cu²⁺ in the initial solution is 6.964x10⁻⁴ M.
Explanation:
The first step to solving this problem is calculating the number of moles of Cu(NO₃)₂ added to the solution:

n = 1.375x10⁻⁵ mol
The second step is relating the number of moles to the signal. We know the the n calculated before is equivalent to a signal increase of 19.9 units (45.1-25.2):
1.375x10⁻⁵ mol _________ 19.9 units
x _________ 25.2 units
x = 1.741x10⁻⁵mol
Finally, we can calculate the Cu²⁺ concentration :
C = 1.741x10⁻⁵mol / 0.025 L
C = 6.964x10⁻⁴ M
Carbon oxides (monoxide, dioxide) are gases :)