3. The sum of the players' momenta is equal to the momentum of the players when they're stuck together:
(75 kg) (6 m/s) + (80 kg) (-4 m/s) = (75 kg + 80 kg) v
where v is the velocity of the combined players. Solve for v :
450 kg•m/s - 320 kg•m/s = (155 kg) v
v = (130 kg•m/s) / (155 kg)
v ≈ 0.84 m/s
4. The total momentum of the bowling balls prior to collision is conserved and is the same after their collision, so that
(6 kg) (5.1 m/s) + (4 kg) (-1.3 m/s) = (6 kg) (1.5 m/s) + (4 kg) v
where v is the new velocity of the 4-kg ball. Solve for v :
30.6 kg•m/s - 5.2 kg•m/s = 9 kg•m/s + (4 kg) v
v = (16.4 kg•m/s) / (4 kg)
v = 4.1 m/s
Explanation:
B. More mass results in less acceleration.
The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:
m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,
m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂' --> equation 1
The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is
(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2
Solving equations 1 and 2 simultaneously, v₁' = -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.
Answer:
When they are connected in series
The 50 W bulb glow more than the 100 W bulb
Explanation:
From the question we are told that
The power rating of the first bulb is 
The power rating of the second bulb is 
Generally the power rating of the first bulb is mathematically represented as

Where
is the normal household voltage which is constant for both bulbs
So

substituting values

Thus the resistance of the second bulb would be evaluated as

From the above calculation we see that

This power rating of the first bulb can also be represented mathematically as

This power rating of the first bulb can also be represented mathematically as

Now given that they are connected in series which implies that the same current flow through them so

This means that

So when they are connected in series

This means that the 50 W bulb glows more than the 100 \ W bulb
Savanna regions developed during the Triassic period. is true