Answer : The total mass of oxygen gas released in the reaction will be, 12.8 grams
Explanation :
Law of conservation of mass : It states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The balanced chemical reaction will be,

According to the law of conservation of mass,
Total mass of reactant side = Total mass of product side
Total mass of
= Total mass of 
or,
Total mass of
= Mass of
+ Mass of 
As we are given :
Total mass of
= 16.12 grams
The mass of
= 9.72 grams
So,
Total mass of
= Mass of
+ Mass of 


Therefore, the total mass of oxygen gas released in the reaction will be, 12.8 grams
25/2 and 96/X
CROSS MULTIPLY.
2x=2,400.
divide by 2.
x=1,200.
you take the GIVEN MASS of an element, and you put it on top, the coefficient is what it’s over. i believe this is right
Ookay
1) T
2) T
3) F
Hope i helped :)
Answer:
Anode half reaction;
Co(s) ----> Co^2+(aq) + 2e
Cathode half reaction;
2Ag^+(aq) + 2e-------> 2Ag(s)
Explanation:
A voltaic cell is an electrochemical cell that spontaneously produces electrical energy from chemical reactions. A voltaic cell comprises of an anode (where oxidation occurs) and a cathode (where reduction occurs). The both electrodes are connected with a wire . A salt bridge ensures charge neutrality in the anode and cathode compartments. Electrons flow from anode to cathode.
For the cell referred to in the question;
Anode half reaction;
Co(s) ----> Co^2+(aq) + 2e
Cathode half reaction;
2Ag^+(aq) + 2e-------> 2Ag(s)
11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
First, calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 1.3 atm
V= 6.75 Liters
n=?
R= 
T=298 K
Putting value in the given equation:


Moles = 0.3588 moles
Now,


Mass= 11.48 gram
Hence, 11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1