Answer:
1.21 times
Explanation:
The energy of a wave is proportional to the square of the amplitude of the wave.
Mathematically:

where
E is the energy of the wave
A is its amplitude
In this problem, the amplitude of the wave increases by a factor of 1.1; it means that the new amplitude can be written as

Therefore, this means that the energy of the wave increases by a factor:

Therefore, the energy of the wave increases by a factor 1.21.
Depends on where you live but generally speaking it is either June or July
Answer:
B
Explanation:
Because the sharpener is attached to an electrical outlet
Answer:
The balanced chemical equation: NH₃ + 2 HF → NH₄⁺ + HF₂⁻
Explanation:
According to the Brønsted–Lowry acid–base theory, the acid- base reaction is a type of chemical reaction between the acid and base to give a conjugate acid and a conjugate base.
In this reaction, a Brønsted–Lowry acid loses a proton to form a conjugate base. Whereas, a Brønsted–Lowry base accepts a proton to form a conjugate acid.
Acid + Base ⇌ Conjugate Base + Conjugate Acid
The acid dissociation constant (Kₐ) <em>signifies the acidic strength of a chemical species.</em>
∵ pKₐ = - log Kₐ
Thus for a strong acid, Kₐ value is large and pKₐ value is small.
pKₐ (HF) = 3.2 → strong acid
pKₐ (NH₃) = 38 → weak acid
<u>The chemical reaction involved in the dissolution process:</u>
NH₃ + 2 HF → NH₄⁺ + HF₂⁻
In this acid-base reaction, the acid HF reacts with NH₃ base to give the conjugate base HF₂⁻ and conjugate acid NH₄⁺.
<u>HF (acid) donates a proton to form the conjugate base, HF₂⁻ ion. NH₃ (base) accepts a proton to form the conjugate acid. </u>
A covalent bond describes two atoms (most likely nonmetals) that share their valence electrons to satisfy the octet rule. Carbon and oxygen are both nonmetals, and they would share electrons with each other through a bond that is not polar enough to be considered ionic. The answer should be B