We have that every gas satisfies the fundamental gas equation, PV=nRT where P is the Pressure, V is the volume of the gas, n are the moles of the gas, R is a universal constant and T is the Temperature in Kelvin. We have that PV/T=nR and during our process, the moles of the gas do not change (no argon enters or escapes our sample). See attached.
Pressure on the inside of the balloon was greater than the pressure on the outside of the balloon so it pushed out until the pressures equalized.
Hello!
1.00 L of a gas at STP is compressed to 473 mL. What is the new pressure of gas?
- <u><em>We have the following data:</em></u>
Vo (initial volume) = 1.00 L
V (final volume) = 473 mL → 0.473 L
Po (initial pressure) = 1 atm (pressure exerted by the atmosphere - in STP)
P (final pressure) = ? (in atm)
- <u><em>We have an isothermal transformation, that is, its temperature remains constant, if the volume of the gas in the container decreases, so its pressure increases. Applying the data to the equation Boyle-Mariotte, we have:</em></u>






<u><em>Answer: </em></u>
<u><em>The new pressure of the gas is 2.11 atm </em></u>
___________________________________

Answer:
The combined gas law is formulated from PV/T =K.
Explanation:
The combined gas law comprises of Boyle's law, Charles's law and Gay lusaac's law. This laws were not discovered but simply put together considering other cases of ideal gas law. It states that if the amount of gas is left unchanged, the ratio between the pressure, volume, and temperature is constant.