Answer: A plot of the natural log of the concentration of the reactant as a function of time is linear.
Explanation:
Since it was explicitly stated in the question that the half life is independent of the initial concentration of the reactant then the third option must necessarily be false. Also, the plot of the natural logarithm of the concentration of reactant against time for a first order reaction is linear. In a first order reaction, the half life is independent of the initial concentration of the reactant. Hence the answer.
When formaldehyde and acetone then react with each other( aldol condensation) then it will be formed <u> methyl vinyl ketone.</u>
<u />
In organic chemistry, an aldol condensation would be a condensation reaction in which an enol and enolate ion combines with a carbonyl chemical to produce a -hydroxy aldehyde or -hydroxy ketone, that is then dehydrated to produce a conjugated enone.
In aldol condensation, when formaldehyde and acetone then react with each other then it will be formed <u> </u><u>methyl vinyl ketone.</u>
It can be written as
→ 
When it will be heated then it gives methyl vinyl ketones.
→ 
So, the pair of reactants will be formaldehyde and acetone
To know more about aldol condensation
brainly.com/question/9415260
#SPJ4
Answer:
One of the main uses of the cathode ray tube is in the Cathode ray oscilloscope
Explanation:
Cathode rays are produced when a gas in an evacuated glass at very low pressure and high pressure breaks up into positive and negative ions. the negative ions move towards the anode(positive electrode) while the positive ions move towards the cathode(negative electrode), and there they knock off electrons (which are known as cathode rays) from the metal plate of the cathode.
Cathode ray tubes are mainly used in oscilloscopes, television picture tubes and in computer screens.
The cathode ray oscilloscope is used in a.c. and d.c. voltage measurements, observation of waveforms, time measurements, etc.
Answer:
The correct answer is "Electrons are transferred in an ionic bond"
Explanation:
The covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
An ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions. Usually, the metal gives up its electrons forming a cation to the nonmetal element, which forms an anion.
In conclusion, chemical bonds are made so that atoms can have their entire outer layer, and thus have a stable electronic configuration. In the ionic bond, when the metallic atom has only one electron in its outer layer and the non-metallic one needs an electron to complete its layer; The metallic atom seats its electron to the non-metallic one. In the same way, the electron is shared in the covalent bond in order to achieve equilibrium.
Then, the main differences between the two bonds are that the ionic bond occurs between two different atoms (metallic and non-metallic), while the covalent bond occurs between two equal atoms (non-metallic). And in the covalent bond there is an electron compartment, while in the ionic bond there is an electron transfer.
So, the correct answer is "Electrons are transferred in an ionic bond"